

Rédigé le 12 novembre 2020

Actualités

Enjeux et prospective

Climat, environnement et économie circulaire

Recyclage des métaux

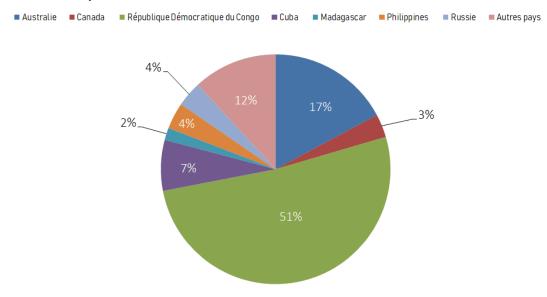
Si la démocratisation des technologies bas carbone de la transition énergétique semble entraîner une diminution de la dépendance aux énergies fossiles, elle en crée en réalité de nouvelles : les énergies renouvelables et les mobilités électriques sont très consommatrices de matériaux. Focus sur le cobalt, un métal privilégié de la transition énergétique, que l'équipe de recherche du département Économie et Évaluation environnementale d'IFPEN estime critique à plus d'un titre.

- Le cobalt, très utilisé dans les batteries et les technologies vertes
- Où se trouve le cobalt ? Qui le produit ? Qui le consomme ?
- Quels risques pèsent sur le cobalt ?
- Comment atténuer les risques d'approvisionnement ?
- A retenir : l'essentiel sur le cobalt en vidéo

LE COBALT, TRÈS UTILISÉ DANS LES BATTERIES ET LES TECHNOLOGIES VERTES

Le cobalt a la particularité d'avoir un point de fusion élevé et de conserver sa résistance ainsi que ses propriétés magnétiques même soumis à de fortes températures. Cela en fait donc un élément incontournable pour de nombreux domaines stratégiques, comme l'aérospatial, la défense, la chimie, etc. On le retrouve entre autres comme composant des superalliages utilisés dans les turbines à gaz et les réacteurs nucléaires, mais également dans les aimants des radars, les systèmes de guidage de missiles, les systèmes de propulsion marins, ou encore les capteurs.

Le cobalt doit cependant sa visibilité actuelle à **son utilisation croissante dans les technologies bas carbone**, également appelées technologies vertes (énergies renouvelables et batteries rechargeables) : il est présent notamment dans les aimants des turbines des éoliennes, mais aussi et surtout dans les cathodes des batteries lithium-ion et des batteries à hydrure métallique de nickel employées dans les véhicules électriques ou hybrides (Slack et al., 2017).


OÙ SE TROUVE LE COBALT ? QUI LE PRODUIT ? QUI LE CONSOMME ? – PANORAMA

Une concentration de cobalt dans la Copperbelt

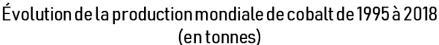
Les ressources terrestres de cobalt s'élèvent à **25 millions de tonnes** (USGS, 2020). La plus grande partie de ces ressources est localisée dans la « **Copper Belt** », zone minière qui englobe notamment une partie de la province de Kantanga en République démocratique du Congo (RDC).

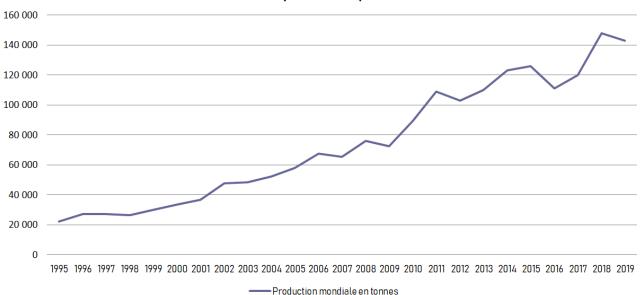
Les ressources restantes sont principalement distribuées entre l'Australie, Cuba, le Canada, la Russie et les États-Unis. **120 millions de tonnes supplémentaires de cobalt** se trouveraient également au fond des océans Atlantique, Indien et Pacifique (USGS, 2020). Leur exploitation n'est toutefois pas encore d'actualité en raison de barrières technologiques, économiques et légales importantes.

Graphique 1 Source : USGS

En 2019, les réserves mondiales de cobalt sont estimées à 7 millions de tonnes et plus de **50 % d'entre elles sont concentrées en RDC**. L'Australie (17,2 %), ainsi que Cuba (7,2 %), disposent également de réserves conséquentes (Graphique 1).

Le saviez-vous ? (Source : Ademe)

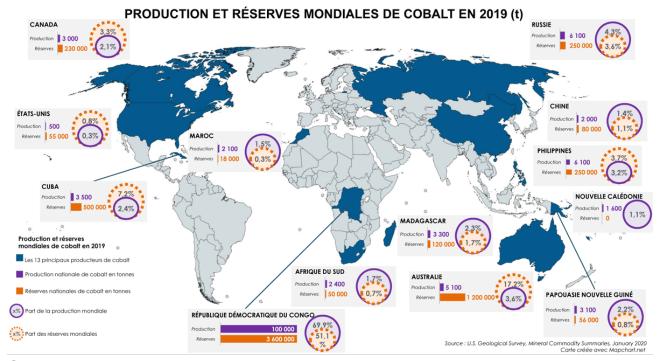

Les ressources rassemblent l'ensemble des gisements connus susceptibles de faire l'objet d'une exploitation au moment où les conditions techniques et économiques le permettraient. Il s'agit d'un périmètre aux caractéristiques essentiellement géologiques.


Les réserves correspondent à la part des ressources qui peut techniquement et surtout économiquement être exploitée, au moment même où elles sont déclarées, en fonction d'un certain nombre de paramètres (volume global du gisement, teneur en métaux recherchés, profondeur, nature géologique, éléments sociaux-environnementaux et prix des matières premières considérées). Ce concept couple données géologiques et données économiques.

La République démocratique du Congo, première productrice de cobalt

La production mondiale de cobalt progresse continuellement depuis le milieu des années 1990 pour culminer à 148 000 tonnes en 2018 et une production estimée à 143 000 tonnes pour l'année suivante (USGS) (Graphique 2).

?



Graphique 2 Source: USGS

La production de cobalt reflète l'inégale répartition des ressources terrestres. En 2019, près de 70 % de la production minière provient de RDC alors que ce pays ne pesait que pour 21 % des extractions mondiales en 2000. Parmi les plus importants producteurs viennent ensuite la Russie avec 6 100 tonnes soit 4,3 % de la production mondiale et l'Australie avec 5 100 tonnes pesant pour 3,6 % du total. La part de chacun des autres « gros » pays producteurs – Philippines, Cuba, Madagascar, Canada, Maroc, Chine et Nouvelle Calédonie - n'excède pas les 3,2 %. Les activités extractives sont donc géographiquement très concentrées (Graphique 3).

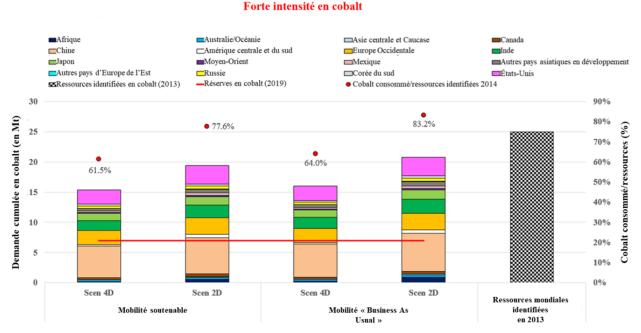
Il en est de même pour le raffinage qui est contrôlé à 50 % par la Chine (Gulley et al., 2019), contre 3 % en 2000, le reste s'effectuant principalement en Finlande, en Belgique et au Canada.

Graphique 3 Source : USGS

La Chine, première consommatrice de cobalt

La Chine, le Japon et les États-Unis sont les principaux consommateurs de cobalt au monde. En 2019, la Chine est sur la première marche du podium et **80 % du cobalt qui y est consommé l'est pour la fabrication de batteries** (USGS).

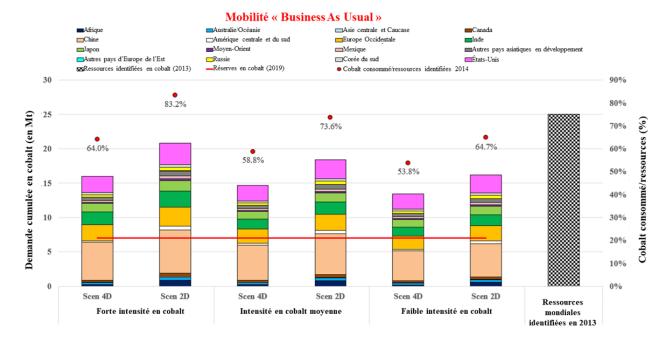
QUELS RISQUES PÈSENT SUR LE COBALT?


Une criticité géologique élevée

Afin d'évaluer la disponibilité du cobalt jusqu'en 2050, le modèle TIAM-IFPEN a été utilisé. Deux scénarios climatiques (2D (2° C) et 4D (4° C)) ont été considérés, avec pour chacun deux scénarios de mobilité différents : **une mobilité Business As Usual (BAU)** - on suppose une augmentation continue du taux de propriété et une dépendance équivalente à celle observée aujourd'hui à l'égard de la voiture – et **une mobilité durable** – des politiques fiscales et réglementaires plus fortes avec une priorité donnée aux modes de mobilité durables tels que les transports publics et non motorisés.

Pour chaque scénario de mobilité, **trois trajectoires de mix de chimies de batteries lithium-ion** ont été envisagées : un à fort contenu en cobalt (10 % NCA, 90 % NMC622), un entre-deux (10 % NCA, 40 % NMC622) et un mix à faible intensité en cobalt (10 % NCA, 90 % NMC811) à l'horizon 2050.

Pour évaluer le niveau de criticité lié au cobalt, des ratios de demande cumulée à l'horizon 2050 par rapport aux ressources connues actuellement ont été calculés, en faisant varier les trois groupes de paramètres précédemment décrits.


Les résultats obtenus mettent en évidence une plus forte pression sur les ressources en cobalt dans un scénario 2° C : en se basant sur un scénario de mobilité BAU avec un mix de batteries lithium-ion à fort contenu en cobalt, le ratio de demande cumulée de cobalt sur ressources passe de 64 % dans le cas d'un scénario climatique 4° C à 83,2 % dans le cas d'un scénario climatique plus ambitieux. Ce dernier ratio signifie que 83,2 % des ressources en cobalt seraient consommées entre 2013 et 2050 dans un tel scénario (Graphique 4).

Graphique 4 Source : IFPEN

Les politiques de mobilité ont également un impact sur la criticité du cobalt : quel que soit le scénario climatique considéré, l'adoption d'une mobilité dite durable permet de réduire la pression exercée sur les ressources en cobalt (Graphique 4).

Le type de technologie de batterie choisie influence lui aussi le niveau de criticité associé au cobalt à l'horizon 2050. Ainsi, dans le cas d'un scénario 2D avec une mobilité BAU, **l'adoption de technologies à faible contenu en cobalt permet d'abaisser le ratio consommation cumulée/ressources** de 83,2 % à 64,7 % (Graphique 5).

Graphique 5 Source : IFPEN

Les résultats suggèrent donc un haut niveau de criticité géologique dans le cas des scénarios les plus contraints. Si l'on considère qu'une limitation du réchauffement climatique à 2D sera l'objectif retenu, deux leviers peuvent alors être mobilisés afin de modérer la pression exercée sur les ressources en cobalt.

En premier lieu, privilégier des **technologies de batteries à faible intensité** en cobalt semble être le moyen le plus efficace pour réduire la criticité liée au cobalt. Dans un second temps, les résultats du travail de modélisation montrent également l'impact positif de **la mise en place de politique de mobilité soutenable** sur le niveau de criticité du métal bleu. Enfin, **le recyclage** est amené à jouer un rôle clé pour satisfaire la forte augmentation de la demande en cobalt à horizon 2050.

Une situation économique et stratégique particulièrement fragile

Le cobalt, un sous-produit des mines de cuivre et de nickel

En 2015, **98** % du cobalt extrait du sol est un sous-produit de mines de cuivre ou de nickel. Seule la mine de Bou-Azzer au Maroc a fait du cobalt son principal produit. Cette caractéristique du cobalt vient renforcer le risque d'approvisionnement qui lui est attaché car la quantité de sous-produit générée par les activités extractives dépend étroitement de celle des métaux principaux. De ce fait, la capacité d'adaptation du marché du cobalt face à une forte hausse de la demande se trouve limitée.

La demande en cobalt est d'autre part **peu sensible aux variations de prix**. En cas de forte hausse des prix, le marché du cobalt va répondre de trois façons : en augmentant les volumes recyclés, en misant sur les innovations technologiques pour exploiter une plus large gamme de ressources et en mobilisant davantage la production informelle de cobalt issue de RDC (Campbell, 2019).

Le cobalt, « blood diamond » selon les ONG

La production minière de cobalt **est contrôlée à plus de 70 % par la RDC** (USGS, 2020) contre 28 % en 2000 (Shedd et al, 2017) ; or le pays souffre d'une forte instabilité politique ainsi que d'une situation sécuritaire préoccupante avec de nombreuses zones de conflit dans l'est du pays.

Les conditions de travail dangereuses, l'exposition à des poussières potentiellement cancérigènes, le travail des enfants, ainsi qu'une prolifération de mines clandestines liée à la haute valeur marchande du cobalt, ont ainsi valu à ce dernier le surnom de « *Blood Diamond* » de la décennie.

Suite à la mauvaise publicité dont ils ont fait l'objet face aux accusations des ONG, les utilisateurs finaux de cobalt (fabricants de batteries, entreprises du secteur de l'électronique) tentent aujourd'hui de mieux tracer leur chaîne d'approvisionnement en cobalt et de diversifier leurs sources. Toutefois, plus de la moitié des réserves mondiales de cobalt sont localisées en RDC. Il parait donc peu probable que la production minière fasse l'objet d'une redistribution géographique majeure.

Quand la puissance chinoise sécurise ses approvisionnements

Ensuite, une situation de dépendance existe également du côté du raffinage et tend à se renforcer : l es raffineries chinoises représentent 50 % du volume mondial contre 3 % seulement en 2000 (Gulley, 2019).

La puissance chinoise a par ailleurs mis en place une stratégie d'investissements à l'étranger pour sécuriser ses approvisionnements en métaux jugés stratégiques. Ainsi, si, pour l'année 2016, la part de la production étrangère de cobalt détenue par des entités chinoises est ajoutée à la production domestique, l'influence chinoise alors passe de 2 % à 14 % pour l'extraction de cobalt et de 11 % à 33 % pour la production de produits intermédiaires du cobalt (Gulley, 2019).

Ces chiffres mettent ainsi en lumière le risque que peut faire peser un pays gagnant en importance dans la chaîne de valeur : la stratégie chinoise de sécurisation de ses approvisionnements **réduit potentiellement la quantité de cobalt disponible pour les autres États consommateurs** (Gulley, 2019).

Quels risques environnementaux et sanitaires pour le cobalt ?

Enfin, bien qu'étant un élément incontournable pour certaines technologies bas carbone, le cobalt – principalement les activités extractives et de raffinage – a un impact environnemental qu'il faut prendre en compte. Les extractions de cobalt sont par exemple gourmandes en énergie issue de ressources fossiles, ce qui contribue au réchauffement climatique.

Ces activités ont par ailleurs un impact sanitaire important pour les mineurs et les populations situées dans les zones concernées. Il a également été montré que la production de cobalt était émettrice de pollutions diverses.

Ce métal illustre le fait que, loin de signer la fin de la dépendance aux matières premières, la transition énergétique et l'électrification des modes de mobilités sont **porteuses de nouvelles contraintes** liées

COMMENT ATTÉNUER LES RISQUES D'APPROVISIONNEMENT ?

Les États et les entreprises suivent ou envisagent plusieurs pistes : d'abord, la diversification des sources d'approvisionnement ; ensuite l'innovation technologique via la conception des batteries moins gourmandes en cobalt (ou l'utilisation d'autres types de batteries) ; enfin, la collecte et le recyclage des déchets électroniques et des batteries.

Ainsi, si aujourd'hui les sources secondaires de cobalt sont encore sous-exploitées, elles pourraient constituer **une ressource importante à l'avenir**.

À RETENIR

- 1. Le cobalt est un métal particulièrement sollicité par les technologies vertes mobilisées par la transition énergétique. **80 % du cobalt** est consommé pour fabriquer des batteries lithium-ion.
- 2. Dans un scénario de réchauffement limité à 2° C, le modèle prévoit que **83,2 % des ressources** seront consommées d'ici à 2050 :
- 3. Les autres risques qui pèsent sur ce métal sont multiples :
- Economique : coproduit d'activités minières et faible réponse aux mouvements de prix ;
- **Stratégique** : concentration de la production minière en République Démocratique du Congo; influence chinoise sur la chaine de valeur ;
- Responsabilité sociale des entreprises : condition de travail, travail des enfants, traçabilité des produits ;
- **Environnemental**: impacts sanitaires sur les mineurs et pollutions locales

Pour aller plus loin

Décryptage : les métaux dans la transition énergétique

Les pressions sur l'eau, face ignorée de la transition énergétique, The Conversation

Retrouvez les éléments clés en vidéo :

Contacts scientifiques : Emmanuel Hache, Charlène Barnet, Gondia Seck

Comment citer cette publication: Hache, Emmanuel; Barnet, Charlène; Seck, Gondia-Sokhna «Le cobalt dans la transition énergétique: quels risques d'approvisionnements?», Les métaux dans la transition énergétique, n° 1, IFPEN, Novembre 2020. »

VOUS SEREZ AUSSI INTÉRESSÉ PAR

L'aluminium dans la transition énergétique : quel avenir pour ce métal « roi du monde moderne » ? Le nickel dans la transition énergétique : pourquoi parle-t-on de métal du diable ? Le lithium dans la transition énergétique : au-delà de la question des ressources ? Les terres rares dans la transition énergétique : quelles menaces sur les « vitamines de l'ère moderne » ?

Le cuivre dans la transition énergétique : un métal essentiel, structurel et géopolitique ! Le cuivre dans la transition énergétique : un métal essentiel, structurel et géopolitique !

Contact

Emmanuel HACHE

Économiste-Prospectiviste, département Économie et Évaluation environnementale, Direction Économie et Veille

Le cobalt dans la transition énergétique : quels risques d'approvisionnements ? 12 novembre 2020

Lien vers la page web :