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L'arrivée à maturité de l'apprentissage automatique dans les années 2010, avec l'avènement de
l'apprentissage profond, a foncièrement modifié le paysage de tous les domaines scientifiques où les
données sont massivement disponibles, et atteint aujourd’hui le monde de la simulation numérique.
Mais ce « Deep Learning » est plus qu'une méthode de régression très puissante, et doit être
également considéré comme le ferment de la programmation différentiable1, approche dont le
déploiement éclairé, dans une relation étroite avec les méthodes classiques des domaines visés,
ouvre de nouvelles voies d'avancées scientifiques rapides.

En effet, les systèmes complexes physiques, mécaniques, chimiques, biologiques ou artificiels sont
aujourd'hui confrontés à des quantités massives de données,
        • soit en entrée, générées par des capteurs bon marché qui sont déployés partout ;
        • soit en sortie, générées par des simulations numériques de modèles mécanistes, qui sont
aujourd'hui matures dans de nombreux domaines. 
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Il y a donc désormais moyen de tirer parti des deux extrémités de la chaîne : depuis l'intégration de
données du monde réel dans des modèles mécanistes existants d'ODE et de PDE2 jusqu’à la
dérivation de modèles entièrement nouveaux, directement à partir de données réelles, en respectant
les propriétés connues du système considéré3.

Ce numéro spécial illustre comment IFPEN tire parti de cette révolution, en associant son expertise
passée à la créativité de ses chercheurs pour développer des solutions innovantes.

Marc Schoenauer, INRIA-Saclay
Membre du Conseil scientifique d’IFPEN
 

1- Combinant le Machine Learning et l'optimisation numérique
2- Respectivement : Ordinary Differential Equation et Partial Differential Equation
3- Par exemple : la conservation de la masse, la dissipation d'énergie, les invariances géométriques
etc.
  

 



LES BRÈVES

L’utilisation de simulations numériques est aujourd’hui largement répandue dans le monde
industriel afin d’aider à la conception de systèmes ou à la prédiction de phénomènes
complexes. C’est le cas notamment pour la simulation des écoulements réactifs, importante
pour de nombreuses applications comme les propulsions automobile et aéronautique, ou
encore les procédés dans l’industrie chimique.

Ces écoulements réactifs impliquent des mélanges de constituants et de composés chimiques qui
réagissent entre eux avec, suivant la nature de ces réactions, une évolution des espèces sur des
échelles de temps qui peuvent varier de plusieurs ordres de grandeur.

Décrire l’évolution temporelle de ces espèces au sein de l’écoulement nécessite des méthodes
numériques avancées, donc coûteuses en temps de calcul, et la résolution de ces équations constitue
alors une part importante du temps total de la simulation d’un système.

L’utilisation de méthodes d’apprentissage pour accélérer les calculs de cinétique chimique est
une approche qui a récemment gagné en popularité. Lors du calcul d’un système industriel, l’idée
est alors de remplacer les algorithmes de résolution classiques par un modèle équivalent, issu d’un
processus d’apprentissage, dont l’évaluation est plus rapide. Ce modèle est généré par l’optimisation
d’un ensemble de paramètres à partir d’une base de données de solutions exactes, préalablement
simulées.

Les chercheurs IFPEN ont eu recours pour cela à des réseaux de neurones, en raison de leur
capacité à reproduire l’évolution d’espèces chimiques. Le travail a porté sur deux axes :
 

Le premier a comparé différentes structures de réseaux de neurones pour prédire les évolutions
d’espèces chimiques. C’est ainsi que des réseaux standards ont été comparés à des réseaux de
neurones dits « récurrents », qui permettent de réaliser des prédictions en tenant compte d’un
historique de valeurs passées, plutôt que d’une seule valeur.
 
Le second s’est concentré sur la prise en compte de contraintes physico-chimiques, en
particulier le fait de respecter la conservation de la masse de chaque élément chimique présent
dans le mélange, ce qui n’est pas garanti avec les réseaux de neurones classiquement utilisés.

 

La méthodologie déployée a été évaluée sur des cas de combustion homogène d’hydrogène.
Dans cette situation, les fractions massiques d’espèces chimiques ne variant pas dans l’espace, la
résolution numérique se limite à des équations différentielles en temps, tel qu’illustré sur la figure. Les
résultats suivants ont été obtenus :
  

Concernant les évolutions temporelles des espèces chimiques (figure), un très bon accord a été
observé entre les solutions exactes et les solutions obtenues avec les réseaux de neurones [1].
Un gain en précision a de plus été constaté en faveur des réseaux récurrents.



  
Une méthode a été mise au point pour construire des réseaux de neurones qui garantissent la
conservation de la masse des éléments chimiques [2].
 

Illustration de l’approche de résolution par réseau de neurones dans le cas de la
combustion de H2

Ces travaux illustrent la capacité de réseaux de neurones à se substituer à des algorithmes de
résolution de cinétique chimique. Les principales perspectives pour les méthodes développées
sont les suivantes :
  

Déploiement sur des cas d’intérêt pratique, moyennant la définition de bases de données
d’apprentissage adaptées.
   
Évaluation du gain obtenu en temps de calcul par rapport aux méthodes classiques.

 

Publications :



[1]  M. Guirat, T. Faney, C. Mehl, Modeling of chemical evolution equations using Long Short
Term Memory Neural Networks, publication soumise. 

[2] C. Mehl, T. Faney, brevet en instruction.
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Un grand nombre de simulateurs, qu’ils portent sur le dimensionnement des procédés
réactionnels, sur l’évolution des réservoirs pétroliers ou de celle des dispositifs de
combustion, nécessitent d’accéder à des propriétés thermodynamiques. Pour fournir ces
propriétés, IFPEN a développé une bibliothèque de modules de calculs, nommée « Carnot », du
nom du célèbre thermodynamicien français. Or ces calculs, en particulier ceux concernant
l’équilibre entre phases (aussi appelés « flash »), sont généralement très consommateurs en
ressource de calcul du fait de la complexité des systèmes considérés, et représentent dans de
nombreux cas la partie la plus chronophage de la simulation.

Pour y remédier, un travail doctoral 1 s’est attaché à développer un algorithme d’apprentissage par les
données, utilisant les réseaux neuronaux, en vue de le substituer aux modèles actuels des calculs de
flash [1]. Pour cela, trois réseaux neuronaux spécifiques ont été mis en place (figure 1) pour :
 

prédire le nombre et le type de phases d'équilibre coexistantes ;
  
initialiser les coefficients de distribution K_i 2  ;
  
évaluer les coefficients de fugacité ?_i 3 utilisés pour mettre à jour K_i.
 

Cliquer sur l'image pour l'agrandir

Figure 1 : Organigramme des calculs de flashs basés sur des données

La nécessité d’intensifier les calculs d’équilibre fait ressortir l’intérêt des calculs de flash basés sur les
données car l’un des avantages les plus convaincants des réseaux neuronaux est de se prêter au
calcul parallèle.

Notre méthodologie a été validée sur un panel d’expériences avec comme résultat une
accélération des calculs d’un facteur 30 (figure 2), tout en assurant un haut degré de précision.

https://www.ifpenergiesnouvelles.fr/sites/ifpen.fr/files/inline-images/NEWSROOM/Lettre%20Science%40IFPEN/Science%2045/VA-02a-Flash.jpg


Figure 2 : Comparaison entre l’outil Carnot et le flash basé sur des données en termes de
temps d'exécution pour 230 mille échantillons d’un mélange d'eau et de méthane.

  
Les prochaines étapes viseront à automatiser le cadre d'apprentissage pour toute composition donnée
et à intégrer les modèles statistiques résultants dans Carnot afin d'évaluer les performances sur des
simulations à partir de compositions de référence.

A plus long terme, l’objectif sera d’optimiser en temps réel le processus d’apprentissage dans les
conditions opératoires propres à chaque cas de simulation numérique.

 

1- Jingang QU : « Acceleration of numerical simulations by means of deep learning - Application to
thermodynamic equilibrium calculations », thèse IFPEN en cours.   
2- Le coefficient de distribution du i-ème composant K_i correspond au rapport de la fraction molaire
du i-ème composant entre la phase gazeuse et la phase liquide.   
3- Le coefficient de fugacité du i-ème composant ?_i est le rapport entre la fugacité réelle et la
fugacité du gaz parfait en mélange aux mêmes pression, température et composition.
 

Publication :

[1]  J. Qu, M. D’Heilly, P. Gallinari, J-C. de Hemptinne, T. Faney et S. Youssef, Efficient phase
equilibrium computations using learning algorithms, ESAT 2021-31st European Symposium on
Applied Thermodynamics, July 2021. 
   

Contact scientifique : thibault.faney@ifpen.fr

>> NUMÉRO 45 DE SCIENCE@IFPEN
 

mailto:thibault.faney@ifpen.fr
https://www.ifpenergiesnouvelles.fr/article/numero-45-scienceifpen-numero-special-science-des-donnees


VOUS SEREZ AUSSI
INTÉRESSÉ PAR

 

 Formation et carrières

 Actualités  avril 2021

Nouvelle chaire dédiée à la thermodynamique des électrolytes

 Sciences physiques Thermodynamique / Modélisation moléculaire

 

 Formation et carrières

 Actualités  avril 2021

Nouvelle chaire dédiée à la thermodynamique des électrolytes

https://www.ifpenergiesnouvelles.fr/article/nouvelle-chaire-dediee-thermodynamique-des-electrolytes
https://www.ifpenergiesnouvelles.fr/article/nouvelle-chaire-dediee-thermodynamique-des-electrolytes
https://www.ifpenergiesnouvelles.fr/tags/sciences-physiques
https://www.ifpenergiesnouvelles.fr/tags/thermodynamique-modelisation-moleculaire
https://www.ifpenergiesnouvelles.fr/article/nouvelle-chaire-dediee-thermodynamique-des-electrolytes
https://www.ifpenergiesnouvelles.fr/article/nouvelle-chaire-dediee-thermodynamique-des-electrolytes


 Sciences physiques Thermodynamique / Modélisation moléculaire

Des « flashs » plus rapides grâce à l’apprentissage profond

https://www.ifpenergiesnouvelles.fr/tags/sciences-physiques
https://www.ifpenergiesnouvelles.fr/tags/thermodynamique-modelisation-moleculaire


La conception de matériaux poreux performants est un enjeu majeur pour l’efficience
énergétique des procédés industriels : en catalyse, biocatalyse ou encore pour les opérations
de séparation et de purification. Pour de telles applications, ces matériaux tirent leurs
propriétés d’intérêt de leur microstructure particulière, comportant une grande quantité
d’espaces vides organisés et connectés à l’échelle du nanomètre. IFPEN et Saint Gobain
Research Provence (SGRP) se sont associés afin de se doter d’un outil facilitant à terme la
mise au point de matériaux poreux optimisés en fonction d’usages donnés1 . Ils ont pour cela
adopté une approche innovante par des jumeaux numériques, élaborés à partir de modèles de
microstructures aléatoires et ajustés par des modèles numériques qui imitent des procédures
expérimentales. Cette approche a ensuite été validée par comparaison avec des résultats
d’essais sur des microstructures modèles.

La simulation numérique des aspects expérimentaux s’exerce sur des microstructures
tridimensionnelles elles-mêmes simulées [1] et repose sur une approche géométrique. Ainsi, la
démarche adoptée utilise essentiellement des corrélations entre des paramètres morphologiques et
des quantités physiques qui caractérisent le système considéré. C’est ce passage d’une description
d'états quasi-statiques de mécanismes physico-chimiques - tels que des changements de phases à
l'équilibre - à celle, purement géométrique et morphologique, des phénomènes à l’œuvre qui constitue
la principale difficulté à surmonter.

La morphologie mathématique, discipline scientifique qui s'intéresse depuis longtemps à la
caractérisation des propriétés texturales 2D et 3D des microstructures, s’est avérée particulièrement
adaptée à la résolution de ce challenge. Pour construire le matériau numérique, des algorithmes
spécifiques d'extraction des réseaux de pores [2] ont tout d’abord permis de considérer des pores aux
géométries complexes et arbitraires, proches de celles rencontrées dans les matériaux réels (figure).
Les opérateurs de morphologie mathématique2 ont ensuite permis de simuler les phénomènes
impliqués dans les techniques expérimentales de porosimétrie. Ils ont notamment permis d’estimer un
opérateur d’intérêt pour ces réseaux poreux : la tortuosité (figure), propriété intimement liée aux
phénomènes diffusifs puisqu’elle caractérise la facilité à traverser ces réseaux [3].

Avec ce type d’approche par jumeau numérique, les simulations d’expérimentations peuvent
prendre en compte de grands volumes représentatifs, avec des arrangements multi-échelles
de microstructures, et moyennant un temps de calcul raisonnable.

Pour aller plus loin encore dans l'optimisation du temps de calcul sans perte de précision sur les
résultats, l’apprentissage profond est un outil prometteur en cours d’évaluation pour établir un
lien direct entre des microstructures numérisées et des résultats d’essai simulés.
 

Cliquer sur l'animation pour l'agrandir



À gauche, simulation numérique d’une microstructure d’un matériau poreux.
À droite, illustration d’un opérateur de tortuosité, rapport des longueurs des chemins entre
deux points par « vol d’oiseau » (distance Euclidienne) et contrainte par le réseau poreux
(distance géodésique).

1- Ces travaux, débutés en 2019, ont fait l’objet du travail postdoctoral d’Alexey Novikov et de la thèse
de doctorat en cours d’Adam Hammoumi.   
2- Voir des exemples sur https://fr.wikipedia.org/wiki/Morphologie_math%C3%A9matique
 

Publications :

[1]  M. Moreaud, J. Chaniot, T. Fournel, J.M. Becker, L. Sorbier. Multi-scale stochastic
morphological models for 3D complex microstructures. 17th Workshop on Information Optics
(WIO), IEEE Conference (2018).
>> https://doi.org/10.1109/WIO.2018.8643455
   
[2] A. Hammoumi, M. Moreaud, E. Jolimaitre, T. Chevalier, A. Novikov, M. Klotz. Efficient Pore
Network Extraction Method Based on the Distance Transform. International Conference on
Artificial Intelligence & Industrial Applications. Springer Ed. (2020).
>> https://doi.org/10.1007/978-3-030-53970-2_1
   
[3] A. Hammoumi, M. Moreaud, E. Jolimaitre, T. Chevalier, A. Novikov, M. Klotz. Graph-based M-
tortuosity estimation. IAPR International Conference on Discrete Geometry and Mathematical
Morphology (2021).
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La caractérisation des réservoirs géologiques, thème historique de l’exploitation pétrolière, est
aujourd’hui un socle d’intérêt pour des domaines applicatifs variés tels que le stockage de CO

2 ou d’hydrogène, ou encore la géothermie. Ces dernières années, l’utilisation conjointe de
l’imagerie 3D par microtomographie (ou micro-CT1) et de techniques de simulation avancées a
permis l’émergence d’une approche digitale du calcul des propriétés pétrophysiques de
roches de réservoir (Digital Rock Physics). Ceci représente un vrai complément voire, dans
certains cas, une alternative aux mesures traditionnelles en laboratoire.

À cet effet, sur la ligne de lumière PSICHE du synchrotron SOLEIL, IFPEN a réalisé une campagne
inédite d’acquisition d’images tomographiques sur une centaine échantillons de roche (de 1 cm de
diamètre et 2 cm de long). La base de données d’images 3D ainsi générée, inédite mais très
volumineuse2, a été exploitée pour la prédiction des propriétés pétrophysiques.

Usuellement, les méthodes numériques employées pour calculer les propriétés physiques à partir
d’images 3D3 restent très coûteuses en temps et souvent limitées par la résolution de ces dernières.
Pour ce travail, les chercheurs IFPEN ont déployé une méthode alternative basée sur l’apprentissage
profond (Deep Learning), propre à exploiter pleinement le volume massif des données acquises [1].
Cette approche ambitieuse a permis de concilier la quantité considérable de données avec des
architectures neuronales, reposant sur des réseaux convolutifs4 3D. Ceci a imposé l’utilisation de
ressources de calcul parallèle importantes, de type processeur graphique5, accessible sur la machine
Jean-Zay du GENCI.

Ces calculs ont mis en évidence une bonne performance de prédiction concernant la
perméabilité des roches étudiées (figure), démontrant ainsi le potentiel des méthodes
d’apprentissage profond en la matière.

Cliquer sur l'image pour l'agrandir

Exemple d’échantillon numérique 3D et comparaison de la prédiction en ordonnée de
perméabilité par rapport à la référence expérimentale en abscisse

https://www.ifpenergiesnouvelles.fr/sites/ifpen.fr/files/inline-images/NEWSROOM/Lettre%20Science%40IFPEN/Science%2045/VA-04-a-et-b-Digital-Rock-Physics-1500x700px.jpg


Pour autant il subsiste des questions portant sur la généralisation de la qualité de prédiction à d’autres
roches et les travaux se poursuivent afin d’en conforter la pertinence pour cet usage.

Un premier axe de travail consiste à utiliser les méthodes d’apprentissage pour construire une
cartographie, et par exemple déduire des propriétés d’intérêt, à l’échelle du pixel. On ambitionne
ainsi de prédire des champs de vitesse en tous points des volumes pour permettre des calculs
de perméabilité plus précis.

L’autre axe concerne l’utilisation d’architectures neuronales spécifiques pour améliorer la résolution
des images acquises, verrou majeur pour la mise en œuvre des modèles d’apprentissage.

 

1- Micro Computed Tomography
2- 32 Go en mémoire pour chaque plug du fait d’une numérisation avec une résolution de 5,8 µm
3- Telles que la Modélisation de Réseaux de Pores (PNM) ou la Méthode de Lattice Boltzmann (LBM)
4- Réseaux neuronaux multicouches dont l’architecture des connexions est inspirée de celle du cortex
visuel des mammifères
5- Graphic Processor Unit (GPU)
 

Publication :

[1]  S. Youssef, G. Batot, F. Cokelaer, S. Desroziers et M. Feraille, On the Performance of Deep
Learning Methods for Rock Property Prediction from 3D Micro-CT Images, en cours de rédaction
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Au cours de la dernière décennie, l’apprentissage profond (Deep Learning) appliqué à l’analyse
d’images a connu un réel essor et une extension dans de nombreux domaines. Cependant, son
potentiel reste encore sous-exploité en géologie, bien que cette discipline implique beaucoup
d’interprétation visuelle. Pour contribuer à la transformation numérique des industries liées au
sous-sol, les chercheurs IFPEN ont mis en œuvre l'apprentissage profond dans trois «
contextes métier », impliquant chacun un type différent d’images géologiques.

Le premier cas d'application [1]  est une classification d'images d'échantillons macroscopiques de
roches avec des réseaux neuronaux convolutifs1.

Dans un premier temps, les chercheurs ont mis en œuvre et comparé différentes architectures
neuronales et stratégies d’apprentissage considérées dans la littérature scientifique comme des
références pour l’analyse d’images. Ceci a permis de construire un premier outil de prédiction
performant.

Dans un second temps, une approche originale mimant la réflexion du géologue a été suivie en se
basant sur un arbre de modèles neuronaux organisés en cascade. Cette méthode facilite l’intégration
de connaissances géologiques dans le modèle statistique et offre une meilleure possibilité
d’explication des prédictions, ainsi qu’une complémentarité intéressante avec le premier modèle en
palliant certaines erreurs (Figure 1).
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Figure 1 : Classification automatisée d’échantillons de terrain avec des algorithmes
d'intelligence artificielle.
En haut : classification directe. Sur chaque image sont affichées les trois classes les plus
probables d’après le réseau neuronal. Les deux premières images sont archétypales et les
probabilités favorisent nettement une seule classe. Cependant, la troisième image est plus
ambiguë et les probabilités reflètent l'incertitude à laquelle un géologue humain serait
confronté.
En bas : classification lithologique combinant la reconnaissance des caractéristiques
pétrologiques et un arbre de décision.

Dans le deuxième cas d'application [2], des algorithmes de détection ont été employés pour
délimiter et catégoriser des microfossiles sur des images numérisées de lames minces de roche.

Plusieurs méthodes d’apprentissage, à partir de l'état de l'art, pour la détection d'objets ont été
comparées sur un premier jeu de données limité à 15 images annotées. Les résultats sur 130 autres
images de lames minces ont été évalués qualitativement par des sédimentologues experts, avec
mesure quantitative des précisions et des temps d'inférence2. Ce travail constitue une preuve de
concept pour l'identification automatisée de la paléofaune, car les modèles ont montré de bonnes
capacités de détection et de catégorisation des microfossiles (Figure 2). Cependant, des différences
de précision et de performance ont été soulignées, ce qui a conduit à émettre des recommandations
pour leur usage dans des projets similaires.
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Figure 2 : Détection automatisée de microfossiles sur une lame mince de roche. Chaque
rectangle généré par l’algorithme délimite une zone comprenant un microfossile. Sa
couleur correspond à l’espèce la plus probable selon le modèle (ex : vert pour les

https://www.ifpenergiesnouvelles.fr/sites/ifpen.fr/files/inline-images/NEWSROOM/Lettre%20Science%40IFPEN/Science%2045/VA-VF-05b-IA%20pour%20geologie-900x1296px.jpg


nummulites, marron pour les alvéolines)

Le troisième cas d'application [3] est une caractérisation lithologique automatisée d’images de
carottes géologiques. Les données considérées sont issues d’une campagne de forage IODP (
International Ocean Drilling Program) dans le Golfe de Corinthe. Elles proviennent de 3 sites différents
et ont été interprétées par un expert en 17 associations de faciès. Dans ce travail, différents défis et
solutions potentielles ont été mis en évidence afin de gérer les situations où peu de données
d’entraînement sont disponibles. En particulier, l’apprentissage par transfert3 ainsi que la calibration
d’hyperparamètres4 se révèlent alors cruciaux pour la mise au point d’un système prédictif performant.

L’ensemble de ces travaux met en lumière tout le potentiel des méthodes d’apprentissage
profond pour capturer des informations géologiques pertinentes à partir d’images, tout en
soulignant le besoin de les adapter spécifiquement aux cas d’application abordés.

 

1- Réseaux neuronaux multicouches dont l’architecture des connexions est inspirée de celle du cortex
visuel des mammifères.
2- Opération de déduction à partir d'informations implicites
3- Consistant à appliquer des connaissances obtenues en effectuant une tâche afin de résoudre un
problème différent, mais qui présente des similitudes.
4- En apprentissage automatique, un hyperparamètre est une variable dont la valeur est utilisée pour
contrôler le processus d'entraînement.
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L’analyse d’image est un moyen classique de caractérisation microstructurale des matériaux
qui, à partir de prises de vue numériques obtenues en microscopie, permet d’obtenir des
grandeurs représentatives de la texture, lesquelles impactent des propriétés globales (par
exemple diffusionnelles ou mécaniques).

La segmentation sémantique réalisée sur des images de microscopie est une opération de
traitement effectuée en vue de quantifier la porosité d’un matériau et son hétérogénéité. Elle
vise à affecter une classe d’appartenance (niveau d’hétérogénéité de la porosité) à chaque pixel de
l’image. Cependant elle est très difficile sur certains matériaux (comme les alumines employées pour
la catalyse), voire impossible par une approche classique de traitement d’image, car les différences de
porosité sont caractérisées par des contrastes faibles et des variations de texture complexes.

Un moyen de dépasser cette limitation est d’aborder par apprentissage profond la
segmentation sémantique, en recourant à un réseau de neurones convolutifs1. Cette méthode, ici
supervisée, nécessite une base de référence construite à partir d’images microstructurales et de leurs
équivalents segmentés à la main où chaque zone a vu ses pixels affectés d’une valeur binaire (0 ou 1)
correspondant à son niveau de porosité (forte / faible). La création de cette base est excessivement
laborieuse et ne peut s’envisager que sur un nombre limité d’images.

Lors de la phase d’apprentissage, le réseau va apprendre à transformer une image en niveaux de
gris (codée sur 8 bits2) en son équivalent binaire, différenciant ainsi les formes d’hétérogénéités
présentes dans la microstructure. L’apprentissage est réalisé sur des zones réduites (patches), à la
fois pour augmenter le nombre de données (plusieurs patches par image) et pour faciliter
l’apprentissage avec un réseau plus petit, comportant moins de paramètres à optimiser [1]. Cette
manière de faire particulière, rendue nécessaire par la taille limitée de la base d’apprentissage, peut
engendrer des imprécisions sur les bords des sous-parties. Une stratégie d'échantillonnage
assemblant de manière stochastique les patches prédits par le réseau est alors utilisée pour pallier cet
effet (figure).

Ces nouvelles opportunités d’analyses d’images par apprentissage profond, couplées aux
techniques conventionnelles, fournissent de nouvelles données de compréhension inédites
pour guider la fabrication des matériaux poreux. Cette méthode de segmentation a notamment été
utilisée avec succès pour caractériser différents types de supports de catalyseur en alumine[2], après
l’opération de peptisation visant à conférer au réseau de pores une organisation hiérarchique3.

Dans les différentes zones d’hétérogénéité texturale observables en microscopie électronique
à balayage, la porosité a par ailleurs été quantifiée par une nouvelle méthode de mesure à
l’échelle locale [3]. Couplés avec l’hypothèse d’une barrière dense formée autour des zones à plus
forte porosité, ces nouveaux résultats expliquent des différences effectives des propriétés de diffusion
mesurées macroscopiquement sur les supports de catalyseur [2].
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Animation décrivant la segmentation sémantique d’une image microscopique en
différentes zones d’hétérogénéité de porosité avec un réseau de neurones convolutifs.
L’image de sortie est reconstituée à partir de patches aléatoires extraits de l’image
d’entrée.

1- Réseaux neuronaux multicouches dont l’architecture des connexions est inspirée de celle du cortex
visuel des mammifères
2- Valeur de chaque pixel entre 0 et 255
3- Avec des dimensions allant de l'échelle du nanomètre à celle du millimètre
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