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L'arrivée a maturité de I'apprentissage automatique dans les années 2010, avec I'avenement de
I'apprentissage profond, a foncierement modifié le paysage de tous les domaines scientifiques ou les
données sont massivement disponibles, et atteint aujourd’hui le monde de la simulation numérique.
Mais ce « Deep Learning » est plus qu'une méthode de régression tres puissante, et doit étre
également considéré comme le ferment de la programmation différentiablel, approche dont le
déploiement éclairé, dans une relation étroite avec les méthodes classiques des domaines Visés,
ouvre de nouvelles voies d'avancées scientifiques rapides.

En effet, les systémes complexes physiques, mécaniques, chimiques, biologiques ou artificiels sont
aujourd’'hui confrontés a des quantités massives de données,

* Soit en entrée, générées par des capteurs bon marché qui sont déployés partout ;

* SOit en sortie, générées par des simulations numériques de modéles mécanistes, qui sont
aujourd’'hui matures dans de nombreux domaines.


https://www.ifpenergiesnouvelles.fr/

Il y a donc désormais moyen de tirer parti des deux extrémités de la chaine : depuis l'intégration de
données du monde réel dans des modéles mécanistes existants d'ODE et de PDEZ jusqu’a la
dérivation de modéles entierement nouveaux, directement a partir de données réelles, en respectant
les propriétés connues du systéme considéré3.

Ce numéro spécial illustre comment IFPEN tire parti de cette révolution, en associant son expertise
passée a la créativité de ses chercheurs pour développer des solutions innovantes.

Marc Schoenauer, INRIA-Saclay
Membre du Conseil scientifique d'IFPEN

1- Combinant le Machine Learning et I'optimisation numérique

2- Respectivement : Ordinary Differential Equation et Partial Differential Equation

3- Par exemple : la conservation de la masse, la dissipation d'énergie, les invariances géométriques
etc.




LES BREVES

L’utilisation de simulations numériques est aujourd’hui largement répandue dans le monde
industriel afin d’aider a la conception de systémes ou a la prédiction de phénomenes
complexes. C'est le cas notamment pour la simulation des écoulements réactifs, importante
pour de nombreuses applications comme les propulsions automobile et aéronautique, ou
encore les procédeés dans I'industrie chimique.

Ces écoulements réactifs impliquent des mélanges de constituants et de composés chimiques qui
réagissent entre eux avec, suivant la nature de ces réactions, une évolution des espéces sur des
échelles de temps qui peuvent varier de plusieurs ordres de grandeur.

Décrire I'évolution temporelle de ces especes au sein de I'écoulement nécessite des méthodes
numeriques avancées, donc colteuses en temps de calcul, et la résolution de ces équations constitue
alors une part importante du temps total de la simulation d’'un systéme.

L'utilisation de méthodes d’apprentissage pour accélérer les calculs de cinétique chimique est
une approche qui arécemment gagné en popularité. Lors du calcul d’'un systeme industriel, I'idée
est alors de remplacer les algorithmes de résolution classiques par un modéle équivalent, issu d’'un
processus d’apprentissage, dont I'évaluation est plus rapide. Ce modeéle est généré par I'optimisation
d’'un ensemble de parametres a partir d’'une base de données de solutions exactes, préalablement
simulées.

Les chercheurs IFPEN ont eu recours pour cela a des réseaux de neurones, en raison de leur
capacité areproduire I’évolution d’espéces chimiques. Le travail a porté sur deux axes :

e Le premier a comparé différentes structures de réseaux de neurones pour prédire les évolutions
d’espéces chimiques. C’est ainsi que des réseaux standards ont été comparés a des réseaux de
neurones dits « récurrents », qui permettent de realiser des prédictions en tenant compte d’'un
historique de valeurs passées, plutdt que d’'une seule valeur.

e Le second s’est concentré sur la prise en compte de contraintes physico-chimiques, en
particulier le fait de respecter la conservation de la masse de chaque €lément chimique présent
dans le mélange, ce qui n'est pas garanti avec les réseaux de neurones classiquement utilisés.

La méthodologie déployée a été évaluée sur des cas de combustion homogene d’hydrogéne.
Dans cette situation, les fractions massiques d’espéces chimiques ne variant pas dans I'espace, la
résolution numeérique se limite a des équations différentielles en temps, tel qu'illustré sur la figure. Les
résultats suivants ont été obtenus :

e Concernant les évolutions temporelles des espéeces chimiques (figure), un trés bon accord a été
observé entre les solutions exactes et les solutions obtenues avec les réseaux de neurones [1].
Un gain en précision a de plus été constaté en faveur des réseaux récurrents.



e Une méthode a été mise au point pour construire des réseaux de neurones qui garantissent la
conservation de la masse des éléments chimiques [2].
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combustion de H2

Ces travaux illustrent la capacité de réseaux de neurones a se substituer a des algorithmes de
résolution de cinétique chimique. Les principales perspectives pour les méthodes développées
sont les suivantes :

e Déploiement sur des cas d'intérét pratique, moyennant la définition de bases de données
d’apprentissage adaptées.

e Evaluation du gain obtenu en temps de calcul par rapport aux méthodes classiques.

Publications :



[1] M. Guirat, T. Faney, C. Mehl, Modeling of chemical evolution equations using Long Short
Term Memory Neural Networks, publication soumise.

[2] C. Mehl, T. Faney, brevet en instruction.

Contact scientifique : cedric.mehl@ifpen.fr

>> NUMERO 45 DE SCIENCE@IFPEN

VOUS SEREZ AUSSI
INTERESSE PAR

'l - h
I @ Trar SpaTts —\
e e it

—————— B

| 22

| Recherche fondamentale |

Y [Acwalites | ayril 2021

Prédire la performance depuis I'atome jusqu’au réacteur pour améliorer les
procédés industriels

| Sciences chimiques || Cinétique de la catalyse et des réactions || Biosciences et biotechnologies |

Biocatalyse



mailto:cedric.mehl@ifpen.fr
https://www.ifpenergiesnouvelles.fr/article/numero-45-scienceifpen-numero-special-science-des-donnees
https://www.ifpenergiesnouvelles.fr/article/predire-performance-latome-jusquau-reacteur-ameliorer-les-procedes-industriels
https://www.ifpenergiesnouvelles.fr/article/predire-performance-latome-jusquau-reacteur-ameliorer-les-procedes-industriels
https://www.ifpenergiesnouvelles.fr/tags/sciences-chimiques
https://www.ifpenergiesnouvelles.fr/tags/cinetique-catalyse-et-des-reactions
https://www.ifpenergiesnouvelles.fr/tags/biosciences-et-biotechnologies
https://www.ifpenergiesnouvelles.fr/tags/biocatalyse

- X

£ T [

o -] |;:-Leg-r‘r1t-!:1'_1 F

> (x+v7)"

105 %

ra Y
(@ transports p——ou

| Recherche fondamentale |

Y/ [Acwalites | qyrif 2021

Prédire la performance depuis I'atome jusqu’au réacteur pour améliorer les
procédeés industriels

| Sciences chimiques || Cinétique de la catalyse et des réactions || Biosciences et biotechnologies

Biocatalyse

Accélération de calculs de cinétique chimique par méthodes d’apprentissage
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Un grand nombre de simulateurs, qu’ils portent sur le dimensionnement des procédeés
réactionnels, sur I’évolution des réservoirs pétroliers ou de celle des dispositifs de
combustion, nécessitent d’accéder a des propriétés thermodynamiques. Pour fournir ces
propriétés, IFPEN a développé une bibliotheque de modules de calculs, nommée « Carnot », du
nom du célebre thermodynamicien francais. Or ces calculs, en particulier ceux concernant
I’équilibre entre phases (aussi appelés « flash »), sont généralement trés consommateurs en
ressource de calcul du fait de la complexité des systemes considérés, et représentent dans de
nombreux cas la partie la plus chronophage de la simulation.

Pour y remédier, un travail doctoral 1 s’est attaché & développer un algorithme d’apprentissage par les
données, utilisant les réseaux neuronaux, en vue de le substituer aux modéles actuels des calculs de
flash [1]. Pour cela, trois réseaux neuronaux spécifiques ont été mis en place (figure 1) pour :

e prédire le nombre et le type de phases d'équilibre coexistantes ;
« initialiser les coefficients de distribution K_i 2 ;

« évaluer les coefficients de fugacité ?_i 3 utilisés pour mettre & jour K_i.

Cliquer sur I'image pour I'agrandir
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Figure 1 : Organigramme des calculs de flashs basés sur des données

La nécessité d'intensifier les calculs d’équilibre fait ressortir I'intérét des calculs de flash basés sur les
données car I'un des avantages les plus convaincants des réseaux neuronaux est de se préter au
calcul parallele.

Notre méthodologie a été validée sur un panel d’expériences avec comme résultat une
accélération des calculs d’'un facteur 30 (figure 2), tout en assurant un haut degré de précision.
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Figure 2 : Comparaison entre I'outil Carnot et le flash basé sur des données en termes de
temps d'exécution pour 230 mille échantillons d’'un mélange d'eau et de méthane.

Les prochaines étapes viseront a automatiser le cadre d'apprentissage pour toute composition donnée
et a intégrer les modéles statistiques résultants dans Carnot afin d'évaluer les performances sur des
simulations a partir de compositions de référence.

A plus long terme, I'objectif sera d’optimiser en temps réel le processus d’apprentissage dans les
conditions opératoires propres a chaque cas de simulation numeérique.

1- Jingang QU : « Acceleration of numerical simulations by means of deep learning - Application to
thermodynamic equilibrium calculations », these IFPEN en cours.

2- Le coefficient de distribution du i-eme composant K_i correspond au rapport de la fraction molaire
du i-eme composant entre la phase gazeuse et la phase liquide.

3- Le coefficient de fugacité du i-eme composant ?_i est le rapport entre la fugacité réelle et la
fugacité du gaz parfait en mélange aux mémes pression, température et compaosition.

Publication :

[1] J. Qu, M. D’Heilly, P. Gallinari, J-C. de Hemptinne, T. Faney et S. Youssef, Efficient phase
equilibrium computations using learning algorithms, ESAT 2021-31st European Symposium on
Applied Thermodynamics, July 2021.

Contact scientifique : thibault.faney@ifpen.fr
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Des « flashs » plus rapides grace a I'apprentissage profond
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La conception de matériaux poreux performants est un enjeu majeur pour I'efficience
énergétique des procédés industriels : en catalyse, biocatalyse ou encore pour les opérations
de séparation et de purification. Pour de telles applications, ces matériaux tirent leurs
propriétés d’intérét de leur microstructure particuliere, comportant une grande quantité
d’espaces vides organisés et connectés a l’échelle du nanometre. IFPEN et Saint Gobain
Research Provence (SGRP) se sont associés afin de se doter d’un outil facilitant a terme la
mise au point de matériaux poreux optimisés en fonction d’usages donnés? . Ils ont pour cela
adopté une approche innovante par des jumeaux numériques, élaborés a partir de modéles de
microstructures aléatoires et ajustés par des modéles numériques qui imitent des procédures
expérimentales. Cette approche a ensuite été validée par comparaison avec des résultats
d’essais sur des microstructures modeles.

La simulation numérique des aspects expérimentaux s’exerce sur des microstructures
tridimensionnelles elles-mémes simulées [1] et repose sur une approche géométrique. Ainsi, la
démarche adoptée utilise essentiellement des corrélations entre des paramétres morphologiques et
des quantités physiques qui caractérisent le systeme considéré. C’est ce passage d’une description
d'états quasi-statiqgues de mécanismes physico-chimiques - tels que des changements de phases a
I'équilibre - a celle, purement géométrique et morphologique, des phénomeénes a I'ceuvre qui constitue
la principale difficulté a surmonter.

La morphologie mathématique, discipline scientifique qui s'intéresse depuis longtemps a la
caractérisation des propriétés texturales 2D et 3D des microstructures, s’est avérée particulierement
adaptée a la résolution de ce challenge. Pour construire le matériau numeérique, des algorithmes
spécifiques d'extraction des réseaux de pores [2] ont tout d’abord permis de considérer des pores aux
géométries complexes et arbitraires, proches de celles rencontrées dans les matériaux réels (figure).
Les opérateurs de morphologie mathématique? ont ensuite permis de simuler les phénomeénes
impliqués dans les techniques expérimentales de porosimétrie. lIs ont notamment permis d’estimer un
opérateur d'intérét pour ces réseaux poreux : la tortuosité (figure), propriété intimement liée aux
phénomenes diffusifs puisqu’elle caractérise la facilité a traverser ces réseaux [3].

Avec ce type d’approche par jumeau numérique, les simulations d’expérimentations peuvent
prendre en compte de grands volumes représentatifs, avec des arrangements multi-échelles
de microstructures, et moyennant un temps de calcul raisonnable.

Pour aller plus loin encore dans l'optimisation du temps de calcul sans perte de précision sur les
résultats, I'apprentissage profond est un outil prometteur en cours d’évaluation pour établir un
lien direct entre des microstructures numeérisées et des résultats d’essai simulés.

Cliquer sur I'animation pour I'agrandir
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A gauche, simulation numérique d’une microstructure d’un matériau poreux.

A droite, illustration d’'un opérateur de tortuosité, rapport des longueurs des chemins entre
deux points par « vol d'oiseau » (distance Euclidienne) et contrainte par le réseau poreux
(distance géodésique).

1- Ces travaux, débutés en 2019, ont fait I'objet du travail postdoctoral d’Alexey Novikov et de la thése
de doctorat en cours d’Adam Hammoumi.
2- Voir des exemples sur https://fr.wikipedia.org/wiki/Morphologie_math%C3%A9matique

Publications :

[1] M. Moreaud, J. Chaniot, T. Fournel, J.M. Becker, L. Sorbier. Multi-scale stochastic
morphological models for 3D complex microstructures. 17th Workshop on Information Optics
(WIO), IEEE Conference (2018).

>> https://doi.org/10.1109/W10.2018.8643455

[2] A. Hammoumi, M. Moreaud, E. Jolimaitre, T. Chevalier, A. Novikov, M. Klotz. Efficient Pore
Network Extraction Method Based on the Distance Transform. International Conference on
Artificial Intelligence & Industrial Applications. Springer Ed. (2020).

>> https://doi.org/10.1007/978-3-030-53970-2_1

[3] A. Hammoumi, M. Moreaud, E. Jolimaitre, T. Chevalier, A. Novikov, M. Klotz. Graph-based M-

tortuosity estimation. IAPR International Conference on Discrete Geometry and Mathematical
Morphology (2021).

Contact scientifiqgue : Maxime M oreaud
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La caractérisation des réservoirs géologiques, theme historique de I’exploitation pétroliere, est
aujourd’hui un socle d’intérét pour des domaines applicatifs variés tels que le stockage de CO
» ou d’hydrogene, ou encore la géothermie. Ces dernieres années, |'utilisation conjointe de
I'imagerie 3D par microtomographie (ou micro-CT1) et de techniques de simulation avancées a
permis I’émergence d’une approche digitale du calcul des propriétés pétrophysiques de
roches de réservoir (Digital Rock Physics). Ceci représente un vrai complément voire, dans
certains cas, une alternative aux mesures traditionnelles en laboratoire.

A cet effet, sur la ligne de lumiére PSICHE du synchrotron SOLEIL, IFPEN a réalisé une campagne
inédite d’acquisition d'images tomographiques sur une centaine échantillons de roche (de 1 cm de
diametre et 2 cm de long). La base de données d’images 3D ainsi générée, inédite mais trés
volumineuse?, a été exploitée pour la prédiction des propriétés pétrophysiques.

Usuellement, les méthodes numériques employées pour calculer les propriétés physiques a partir
d’images 3D3 restent trés colteuses en temps et souvent limitées par la résolution de ces derniéres.
Pour ce travail, les chercheurs IFPEN ont déployé une méthode alternative basée sur I'apprentissage
profond (Deep Learning), propre a exploiter pleinement le volume massif des données acquises [1].
Cette approche ambitieuse a permis de concilier la quantité considérable de données avec des
architectures neuronales, reposant sur des réseaux convolutifs? 3D. Ceci a imposé I'utilisation de
ressources de calcul paralléle importantes, de type processeur graphique®, accessible sur la machine
Jean-Zay du GENCI.

Ces calculs ont mis en évidence une bonne performance de prédiction concernant la
perméabilité des roches étudiées (figure), démontrant ainsi le potentiel des méthodes
d’apprentissage profond en la matiere.

Cliquer sur lI'image pour I'agrandir
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perméabilité par rapport a la référence expérimentale en abscisse
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Pour autant il subsiste des questions portant sur la généralisation de la qualité de prédiction a d’autres
roches et les travaux se poursuivent afin d’en conforter la pertinence pour cet usage.

Un premier axe de travail consiste a utiliser les méthodes d’apprentissage pour construire une
cartographie, et par exemple déduire des propriétés d’intérét, a I'échelle du pixel. On ambitionne
ainsi de prédire des champs de vitesse en tous points des volumes pour permettre des calculs
de perméabilité plus précis.

L’'autre axe concerne I'utilisation d’architectures neuronales spécifiques pour améliorer la résolution
des images acquises, verrou majeur pour la mise en ceuvre des modeles d’apprentissage.

1- Micro Computed Tomography

2- 32 Go en mémoire pour chaque plug du fait d’'une numérisation avec une résolution de 5,8 um

3- Telles que la Modélisation de Réseaux de Pores (PNM) ou la Méthode de Lattice Boltzmann (LBM)
4- Réseaux neuronaux multicouches dont I'architecture des connexions est inspirée de celle du cortex
visuel des mammiféres

5- Graphic Processor Unit (GPU)

Publication :

[1] S. Youssef, G. Batot, F. Cokelaer, S. Desroziers et M. Feraille, On the Performance of Deep
Learning Methods for Rock Property Prediction from 3D Micro-CT Images, en cours de rédaction

Contact scientifique : souhail.youssef @ifpen.fr
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Au cours de la derniere décennie, I'apprentissage profond (Deep Learning) appliqué a I’analyse
d’images a connu un réel essor et une extension dans de nombreux domaines. Cependant, son
potentiel reste encore sous-exploité en géologie, bien que cette discipline implique beaucoup
d’interprétation visuelle. Pour contribuer a la transformation numeérique des industries liées au
sous-sol, les chercheurs IFPEN ont mis en ceuvre l'apprentissage profond dans trois «
contextes métier », impliquant chacun un type différent d’images géologiques.

Le premier cas d'application [1] est une classification d'images d'échantillons macroscopiques de
roches avec des réseaux neuronaux convolutifs?,

Dans un premier temps, les chercheurs ont mis en ceuvre et comparé différentes architectures
neuronales et stratégies d’apprentissage considérées dans la littérature scientifique comme des
références pour I'analyse d’images. Ceci a permis de construire un premier outil de prédiction
performant.

Dans un second temps, une approche originale mimant la réflexion du géologue a été suivie en se
basant sur un arbre de modéles neuronaux organisés en cascade. Cette méthode facilite I'intégration
de connaissances géologiques dans le modele statistique et offre une meilleure possibilité
d’explication des prédictions, ainsi qu’'une complémentarité intéressante avec le premier modéle en
palliant certaines erreurs (Figure 1).

Cliquer sur lI'image pour I'agrandir

Conglomerate 98% Mudrock 87% Limestone37%
Flint 1% Flint 11% Sandstone 32%
Mica schist < 1% Mica schist < 1% Mudrock 26%

Origin CNN classifier: Intrusive-looking (99%)

Chemistry CNN classifier: Felsic-looking (99%)

Banding CNN classifier: Visible (94%)

Litho-type decision tree: It may be an orthogneiss
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Figure 1 : Classification automatisée d’échantillons de terrain avec des algorithmes
d'intelligence artificielle.

En haut : classification directe. Sur chaque image sont affichées les trois classes les plus
probables d’'apres le réseau neuronal. Les deux premiéres images sont archétypales et les
probabilités favorisent nettement une seule classe. Cependant, la troisieme image est plus
ambigué et les probabilités refletent l'incertitude a laquelle un géologue humain serait
confronté.

En bas : classification lithologique combinant la reconnaissance des caractéristiques
pétrologiques et un arbre de décision.

Dans le deuxiéme cas d'application [2], des algorithmes de détection ont été employés pour
délimiter et catégoriser des microfossiles sur des images numérisées de lames minces de roche.

Plusieurs méthodes d’apprentissage, a partir de I'état de I'art, pour la détection d'objets ont été
comparées sur un premier jeu de données limité a 15 images annotées. Les résultats sur 130 autres
images de lames minces ont été évalués qualitativement par des sédimentologues experts, avec
mesure quantitative des précisions et des temps d'inférence2. Ce travail constitue une preuve de
concept pour l'identification automatisée de la paléofaune, car les modéles ont montré de bonnes
capacités de détection et de catégorisation des microfossiles (Figure 2). Cependant, des différences
de précision et de performance ont été soulignées, ce qui a conduit a émettre des recommandations
pour leur usage dans des projets similaires.

Cliquer sur lI'image pour l'agrandir

Figure 2 : Détection automatisée de microfossiles sur une lame mince de roche. Chaque
rectangle généré par 'algorithme délimite une zone comprenant un microfossile. Sa
couleur correspond a I'espéce la plus probable selon le modéle (ex : vert pour les


https://www.ifpenergiesnouvelles.fr/sites/ifpen.fr/files/inline-images/NEWSROOM/Lettre%20Science%40IFPEN/Science%2045/VA-VF-05b-IA%20pour%20geologie-900x1296px.jpg

nummulites, marron pour les alvéolines)

Le troisieme cas d'application [3] est une caractérisation lithologique automatisée d’'images de
carottes géologiques. Les données considérées sont issues d’'une campagne de forage IODP (
International Ocean Drilling Program) dans le Golfe de Corinthe. Elles proviennent de 3 sites différents
et ont été interprétées par un expert en 17 associations de facies. Dans ce travail, différents défis et
solutions potentielles ont été mis en évidence afin de gérer les situations ou peu de données
d’entrainement sont disponibles. En particulier, 'apprentissage par transfert3 ainsi gue la calibration
d’hyperparamétres® se révélent alors cruciaux pour la mise au point d’un systéme prédictif performant.

L’ensemble de ces travaux met en lumiére tout le potentiel des méthodes d’apprentissage
profond pour capturer des informations géologiques pertinentes a partir d'images, tout en
soulignant le besoin de les adapter spécifiquement aux cas d’application abordés.

1- Réseaux neuronaux multicouches dont I'architecture des connexions est inspirée de celle du cortex
visuel des mammiferes.

2- Opération de déduction a partir d'informations implicites

3- Consistant a appliquer des connaissances obtenues en effectuant une tache afin de résoudre un
probléme différent, mais qui présente des similitudes.

4- En apprentissage automatique, un hyperparameétre est une variable dont la valeur est utilisée pour
contrdler le processus d'entrainement.
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L’analyse d’image est un moyen classique de caractérisation microstructurale des matériaux
qui, a partir de prises de vue numeériques obtenues en microscopie, permet d’obtenir des
grandeurs représentatives de la texture, lesquelles impactent des propriétés globales (par
exemple diffusionnelles ou mécaniques).

La segmentation sémantique réalisée sur des images de microscopie est une opération de
traitement effectuée en vue de quantifier la porosité d’'un matériau et son hétérogénéité. Elle
vise a affecter une classe d’'appartenance (niveau d’hétérogénéité de la porosité) a chaque pixel de
'image. Cependant elle est tres difficile sur certains matériaux (comme les alumines employées pour
la catalyse), voire impossible par une approche classique de traitement d’'image, car les différences de
porosité sont caractérisées par des contrastes faibles et des variations de texture complexes.

Un moyen de dépasser cette limitation est d’aborder par apprentissage profond la
segmentation sémantique, en recourant & un réseau de neurones convolutifsl. Cette méthode, ici
supervisée, nécessite une base de référence construite a partir d'images microstructurales et de leurs
équivalents segmentés a la main ou chaqgue zone a vu ses pixels affectés d’'une valeur binaire (0 ou 1)
correspondant a son niveau de porosité (forte / faible). La création de cette base est excessivement
laborieuse et ne peut s’envisager que sur un nombre limité d'images.

Lors de la phase d’apprentissage, le réseau va apprendre a transformer une image en niveaux de
gris (codée sur 8 bits2) en son équivalent binaire, différenciant ainsi les formes d’hétérogénéités
présentes dans la microstructure. L'apprentissage est réalisé sur des zones réduites (patches), a la
fois pour augmenter le nombre de données (plusieurs patches par image) et pour faciliter
I'apprentissage avec un réseau plus petit, comportant moins de parametres a optimiser [1]. Cette
maniere de faire particuliere, rendue nécessaire par la taille limitée de la base d’apprentissage, peut
engendrer des imprécisions sur les bords des sous-parties. Une stratégie d'échantillonnage
assemblant de maniére stochastique les patches prédits par le réseau est alors utilisée pour pallier cet
effet (figure).

Ces nouvelles opportunités d’analyses d’'images par apprentissage profond, couplées aux
techniques conventionnelles, fournissent de nouvelles données de compréhension inédites
pour guider la fabrication des matériaux poreux. Cette méthode de segmentation a notamment été
utilisée avec succes pour caractériser différents types de supports de catalyseur en aluminel?], apres
I'opération de peptisation visant a conférer au réseau de pores une organisation hiérarchique3.

Dans les différentes zones d’hétérogénéité texturale observables en microscopie électronique
a balayage, la porosité a par ailleurs été quantifiée par une nouvelle méthode de mesure a
I’échelle locale [3]. Couplés avec I'hypothése d’'une barriere dense formée autour des zones a plus
forte porosité, ces nouveaux résultats expliquent des différences effectives des propriétés de diffusion
mesurées macroscopiquement sur les supports de catalyseur [2].

Cliquer sur I'animation pour I'agrandir
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Animation décrivant la segmentation sémantique d’'une image microscopique en
différentes zones d’hétérogénéité de porosité avec un réseau de neurones convolutifs.
L’image de sortie est reconstituée a partir de patches aléatoires extraits de I'image
d’entrée.

1- Réseaux neuronaux multicouches dont I'architecture des connexions est inspirée de celle du cortex
visuel des mammiféeres

2- Valeur de chaque pixel entre 0 et 255

3- Avec des dimensions allant de I'échelle du nanometre a celle du millimétre
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