

Rédigé le 22 septembre 2022 5 minutes de lecture Actualités

- Enjeux et prospective
- Captage, stockage et valorisation du CO2

Transport et stockage du ${\rm CO_2}$: pour des moyens à la hauteur des objectifs de décarbonation | Audrey Estublier et Kateryna Voronetska

Si l'on veut atteindre la neutralité carbone, ce sont 5 milliards de tonnes de ${\rm CO_2}$ qu'il faudrait stocker par an en 2050 d'après l'Agence internationale de l'énergie (IEA). Avons-nous les moyens de nos ambitions en matière de stockage ? En Europe, les capacités sont là, assurent dans ce $3^{\rm e}$ épisode Audrey Estublier, cheffe du projet stockage du ${\rm CO_2}$ et Kateryna Voronetska, cheffe du projet Compression, Transport, Puits, deux expertes du domaine chez IFPEN. Reste à préparer les sites de stockage et assurer leur sécurité pour les centaines d'année à venir.

A retenir de ce podcast

Peut-on stocker le CO₂ ? Et surtout, dans quelles quantités ?

L'Agence internationale de l'énergie estime, dans le scénario Net Zero Emission by 2050 (NZE) rendu public en 2021, qu'il faudra pouvoir stocker **5000 millions de tonnes de CO₂** (soit 5 milliards de tonnes) par an en 2050 pour atteindre la neutralité carbone, contre 40 millions de tonnes aujourd'hui.

Les capacités de stockage existent bel et bien. Les premières estimations dépassent, en théorie, **plus de 500 milliards de tonnes en Europe**, soit l'équivalent de 100 ans d'émissions mondiales en 2019 réparties sur des sites offshore et onshore.

Le CO₂ est stocké dans deux types de réservoirs :

- les réservoirs dits « déplétés », autrement dit généralement des anciens gisements d'hydrocarbures exploités et aujourd'hui épuisés. Après plus d'un siècle d'une exploitation intensive, ce sont des milliers de gisements de pétrole et de gaz naturel qui arrivent ou sont déjà en fin de production. Ils constituent pour certains d'entre eux autant d'espaces pour stocker le CO₂, qui d'ailleurs provient originellement de ces mêmes réservoirs ;
- les aquifères salins profonds qui sont des roches poreuses et perméables contenant de la saumure, c'est-àdire une eau salée non potable dans laquelle on peut injecter et dissoudre le CO₂. Situés à de grandes profondeurs, ces formations géologiques représenteraient le plus gros potentiel en matière de capacité de stockage.

>> Le CCUS de A à Z / Aquifères salins profonds (Club CO₂)

Depuis 1996, dans le cadre du projet européen Sleipner, Equinor injecte 1 million de tonnes de CO₂/an dans un aquifère salin profond, dans le sous-sol au large de la Norvège.

Comment transporter le CO₂?

Le CO₂ se transporte **au même titre que le gaz naturel** et ne pose pas de difficulté technique particulière. Le transport peut se faire par camion, par train ou encore par gazoduc ou par bateau quand les quantités acheminées sont plus importantes.

Deux points de vigilance sont néanmoins à maintenir sur :

- le phénomène dit de corrosion des matériaux utilisés tout le long de la chaîne CCUS, et lors du stockage en particulier. En effet, les matériaux métalliques interagissent avec le CO₂ sous sa forme liquide et/ou gazeuse, ce qui, avec le temps, fragilisent ales infrastructures ;
- le degré d'impureté du CO₂ qui conditionne la compression du gaz avant son transport, et donc son coût.

>> En savoir plus sur les solutions IFPEN en matière de corrosion dans les domaines des énergies à bas carbone

Stockage du CO₂ : au-delà des capacités, une question de moyens

Si les capacités de stockage posent questions aujourd'hui, ce n'est donc pas parce qu'elles sont insuffisantes, mais parce que, à ce jour, **le développement de projets opérationnels est trop lent** pour répondre à la demande de stockage à court terme.

Or, il est indispensable de préparer les sites de stockage dès aujourd'hui pour qu'ils soient disponibles d'ici 5 à 10 ans au plus tard.

>> Pour en savoir plus, découvrez l'épisode 2 - Déployer le CCUS : une question de coûts et de planification des infrastructures

Comment y remédier ?

- affiner les capacités de stockage pour identifier rapidement les sites les plus adaptés ;
- démontrer la sécurité de ces sites de stockage aussi bien lors de l'injection du CO₂ que sur la durée du stockage (de très long terme, elle concerne des centaines d'années);
- travailler de concert avec la société civile en l'associant à la démarche et aux projets de transport et stockage du CO₂ aujourd'hui indispensables à la neutralité carbone.

Stocker sous la mer : le choix de la Norvège

Dans les années 1990, l'État norvégien a fait le choix d'un stockage dans des réservoirs situés sous la couche océanique.

Stocker le CO₂ en toute sécurité : l'intégrité des puits en question

Les roches des anciens gisements ont fait preuve de leur capacité à stocker des gaz pendant des millions d'année avant que les pétroliers ne les exploitent. Même s'il faut bien entendu s'assurer que l'exploitation de ces gisements par l'homme n'a pas remis en question cette étanchéité, l'enjeu réside dans les puits qui ont été construits par l'homme.

Sont-ils réutilisables pour injecter du CO₂ dans le sous-sol ? Leur intégrité reste-t-elle acquise pour un stockage du CO₂ sur plusieurs centaines d'années ?

L'« intégrité » des puits, qu'est-ce que c'est ?

La mise en production d'un gisement d'hydrocarbures exige le forage d'un certain nombre de puits. Le forage consiste à percer la croûte terrestre pour atteindre les gisements, les puits forés pouvant atteindre en général 2000 à 4000 mètres de profondeur. L'intégrité d'un puits désigne sa capacité à empêcher les éventuelles fuites ou remontées de CO_2 . De sa conception à son abandon, ce sont toutes les étapes de la vie d'un puits qui conditionnent son intégrité ou étanchéité.

Dans le cadre du projet collaboratif international $\underline{\text{REX CO2}}$, IFPEN a travaillé au développement d'un outil d'évaluation des puits pétroliers pour leur réutilisation dans le cadre de projets de stockage de $\underline{\text{CO}}_2$.

>>En savoir plus sur les solutions IFPEN en matière de sécurisation et de surveillance des sites de stockage

Faire le point avec un quiz

IFPEN : Décryptage > Captage, stockage et valorisation du CO₂

Vous serez aussi intéressé par

Le CCUS dans la transition écologique | Le podcast #5 - Valorisation du CO2

Le CCUS dans la transition écologique | Le podcast #4 - Captage du CO2

Le CCUS dans la transition écologique | Le podcast #2 - Déploiement

Le CCUS dans la transition écologique | Le podcast #2 - Déploiement

Le CCUS dans la transition écologique | Le podcast #3 - Transport et stockage du CO2 22 septembre 2022

Lien vers la page web: