En résumé

Après une thèse en catalyse hétérogène (UPMC, 2003-2006), au cours de laquelle j'ai acquis des compétences en synthèse minérale, en spectroscopies, tests catalytiques et modélisation théorique, j'ai choisi d'explorer plus en profondeur le potentiel des calculs ab initio pour la modélisation de surfaces catalytiques pertinentes dans un contexte industriel. J'ai rejoint IFP Energies nouvelles, avec pour mission l'implémentation des calculs ab initio au sein de programmes de recherche expérimentaux. Depuis, j'ai développé mes activités à l'interface entre chimie quantique et catalyse expérimentale. La portée de mes travaux de recherche a été reconnue par ma nomination en 2014 comme chef du projet EYRING, puis en 2019 du projet FERMI, réunissant des experts dans des domaines divers, et avec pour objectif la construction de modèles cinétiques (pour le raffinage, la pétrochimie, la transformation de la biomasse et la dépollution automobile) à partir de calculs ab initio. L'originalité de ces travaux a également été reconnue dans la communauté internationale, avec les indicateurs suivants

- 76 articles publiés dans des revues à comité de lecture, un chapitre de livre, et 3 brevets

- H=28, 2337 citations, (source: Web Of Science, 21 Septembre 2019)

- 9 présentations sur invitation à des conférences (inter)nationales (dont une keynote à EUROPACAT 2019, et une keynote à venir à FEZA 2020), 12 présentations sur invitation dans des workshops (inter)nationaux, 8 présentations lors d'écoles (inter)nationales, 11 seminaires dont 3 à l'étranger (Belgique, Allemagne). 12 présentations orales sur soumission de résumés dans des conferences & workshops (inter)nationaux (+ ~75 comme co-autheure).

- 3 prix jeunes chercheurs (Edith Flanigen 2015, division Chimie Physique de la SCF 2016, division de Catalyse de la SCF 2018).

J'ai également présidé le Groupe d’Etudes en Catalyse (GECat, 2014-2017), et j'ai été et suis toujours impliquée dans l'organisation de conférences internationales.

Projets

Industrial heterogeneous catalysts are complicated systems. In the context of the energetic transition we are currently facing, understanding their structure at the atomic scale, and their precise role in the catalytic elementary steps is crucial for the conception of ever more efficient catalytic systems. My research works are devoted to the understanding and prediction at the atomic scale, of the structure and reactivity of realistic heterogeneous catalysts of industrial relevance, for applications in the fields of energy and chemistry. To achieve this goal, Density Functional Theory (DFT) calculations are performed, in strong connection with experimental studies (spectroscopies, reaction kinetics) and kinetic modelling. The structure and behaviour of surface sites of complex systems have thus been predicted, accounting for the influence of the chemical environment (temperature, partial pressures of reactants or of other compounds present in the reaction atmosphere), to as to assign spectroscopic (IR, NMR, XANES, …) feature, and to quantify the kinetic feature of the elementary steps for various catalytic cycles. Finally, thermokinetic data calculated ab initio have been introduced in kinetic models to as to predict macroscopic data (such as TOFs, selectivity) by multi-scale kinetic modelling. This approach, when validated by cautious kinetic experiments, is a powerful way for both the unravelling of the reaction mechanism, and for the construction of robust kinetic models based on chemical atomistic investigations rather than on analytical fitting. These achievements pave the way for the experimental optimization of several kinds of catalytic systems in the field of the synthesis of clean fuels and chemicals, from fossil and renewable sources, and also in the field of pollution abatement.

 

Picture-ASA

In particular, I have unravelled the structure and behaviour of Brønsted acid sites at the surface of amorphous silica-alumina (ASA), a very important catalyst and support in refining and acido-basic catalysis in general, thanks to ab initio calculations [12]. The structure of these sites were debated for decade. We called these sites "Pseudo-Bridging Silanols". The structure of these sites recently appeared to be compatible with a set of DNP NMR feature [49], and exhibit very specific behaviour with respect to basic probe molecules [18,25,27,28,43]. Our calculations were able to explain and anticipate their reactivity with respect to carbenium ions [46], and to quantify the difference between ASA and alumina with respect to the interaction of the surface with metallic cations [47]. A fully original behaviour of the Pseudo-Bridging Silanols for the dehydration of isopropanol into propene (an important reaction in the context of biomass conversion and green chemistry) was also revealed, by the combination of DFT calculations, experimental kinetic measurements, and ab initio-based multi-scale kinetic modelling [56]. Pseudo-Bridging Silanols are indeed the only one being able to combine Lewis and Brønsted moieties, required to optimally stabilize the HO- leaving group. From a methodological point of view, this study demonstrates the feasibility and the high-potential of the construction of kinetic models from mechanisms and rate constants calculated ab initio.

We have also established original models for the external surface of MOFs[17,20] and zeolites[61], providing key explanation for their reactivity. Still with the aim of going closer and closer to reality, the mechanisms at the origin of the formation of EFAl species in zeolites were investigated and the regioselectivity of their formation unraveled for several zeolitic frameworks [45,52].

 

Picture-Cluster

I also contributed to the atomic-scale elucidation of the dynamical behaviour of sub-nanometric platinum particles supported on alumina, depending on structural and environment parameters (size [13], support [19,31], composition[30,72,73], temperature, H2[23,44,70], O2[67,70], hydrocarbon pressures[40,68]), demonstrating a huge impact of the cluster ductility, even in the course of a catalytic cycle [68].

All these studies, corroborated by spectroscopic (XANES) and experimental catalytic measurements, challenge the concept of structure sensitivity/insensitivity of catalytic reactions. Similar methodologies were also applied successfully for the quantification of the sulfation of NOx traps [32,39,41], of the environment of copper in chabazite for NH3-SCR [64,66], and of the reactivity of gamma-alumina for isopropanol dehydration [48,51,54]. My current works follow the direction given by these first successes in the implementation of the multi-scale kinetic approach, addressing ever more realistic cases, such as the isomerization of ethylcyclohexene in EUO zeolite frameworks.[63,69] The location of the active sites was identified by the calculations, and confirmed experimentally by the comparison of the performance of the EU-1 and ZSM-50 (same framework but different location of sites) zeolites. We also aim at obtaining ever more accurate rate constants, for example by performing advanced ab initio molecular dynamics calculations [71,76].
 

Publications

 https://orcid.org/0000-0001-5140-8397 

ORCID

 

 


76. Interplay of the adsorption of light and heavy paraffins over HBEA zeolite in hydroisomerization, P. S. F. Mendes*, C. Chizallet, J. Pérez-Pelitero, P. Raybaud, J. M. Silva, M. F. Ribeiro, A. Daudin, C. Bouchy*, Catal. Sci. Technol., 9, 5368-5382, 2019. https://doi.org/10.1039/C9CY00788A  

75. Competition of secondary versus tertiary carbenium routes for the type B isomerization of alkenes over acid zeolites quantified by AIMD simulations, J. Rey, P. Raybaud, C. Chizallet,* T. Bučko*, ACS Catalysis, 9, 9813-9828, 2019. https://doi.org/10.1021/acscatal.9b02856  

74. Beyond γ-Al2O3 Crystallite Surfaces: the Hidden Role of Edges Revealed by High-Field 1H NMR and DFT, A. T. F. Batista, D. Wisser, T. Pigeon, D. Gajan, A.-S. Gay, F. Diehl, M. Rivallan, L. Catita, A. Lesage, C. Chizallet, P. Raybaud*, J. Catal., 378, 140-143, 2019. https://doi.org/10.1016/j.jcat.2019.08.009  

73. Atomistic models for highly-dispersed PtSn/γ-Al2O3 catalysts :  ductility and dilution affect the affinity for hydrogen, A. Gorczyca, P. Raybaud, V. Moizan, Y. Joly, C. Chizallet*, ChemCatChem, 11, 3941–3951, 2019. https://doi.org/10.1002/cctc.201900429  

72. Les approches de chimie théorique en catalyse (fiche catalyse n°52), C. Chizallet*, L’Actualité Chimique, 441, 89-90, 2019.

71. On the origin of the difference between type A and type B skeletal isomerization of alkenes: the crucial input of ab initio molecular dynamics, J. Rey, A. Gomez, P. Raybaud, C. Chizallet,* T. Bučko*, J. Catal., 373, 361–373, 2019. https://doi.org/10.1016/j.jcat.2019.04.014

70. Effect of the gaseous atmosphere on the stability and mobility of Pt single atoms and subnanometric clusters on γ-alumina, C. Dessal, A. Sangnier, C. Chizallet,* C. Dujardin, F. Morfin, J.L. Rousset, M. Aouine, P. Afanasiev, L. Piccolo*, Nanoscale, 11, 6897- 6904, 2019. https://doi.org/10.1039/C9NR01641D  

69. Location of the Active Sites for Ethylcyclohexane Hydroisomerization by Ring Contraction and Expansion in the EUO Zeolitic Framework, E. Gutierrez-Acebo, J. Rey, C. Bouchy, Y. Schuurman, C. Chizallet*, ACS Catalysis, 9, 1692-1704, 2019. https://doi.org/10.1021/acscatal.8b04462  

68. Dehydrogenation Mechanisms of Methyl-cyclohexane on γ-Al2O3 Supported Pt13: Impact of Cluster Ductility, W. Zhao, C. Chizallet, P. Sautet, P. Raybaud*, J. Catal., 370, 118-129, 2019https://doi.org/10.1016/j.jcat.2018.12.004  


67. Multi-scale approach to the dissociative adsorption of oxygen on highly dispersed Platinum supported on γ-Al2O3, A. Sangnier, M. Matrat, A. Nicolle, C. Dujardin, C. Chizallet*, J. Phys. Chem. C., 122, 26974–26986, 2018. http://dx.doi.org/10.1021/acs.jpcc.8b09204  

66. Modeling Ammonia and Water co-Adsorption in CuI-SSZ-13 Zeolite Using DFT Calculations,  H. Petitjean, C. Chizallet, D. Berthomieu*,  Ing. Eng. Chem. Res., 57, 15982-15990, 2018. http://dx.doi.org/10.1021/acs.iecr.8b03821  

65. Biomass-mediated ZSM-5 zeolite synthesis: when self-assembly allows to cross the Si/Al lower limit, M. M. Pereira,* E. S. Gomes, A.V. Silva, A. B. Pinar, M.G. Willinger, S. Shanmugam, C. Chizallet, G. Laugel, P. Losch, B. Louis*, Chem. Sci., 9, 6532-6539, 2018. http://dx.doi.org/10.1039/C8SC01675E  

64. Copper coordination to water and ammonia in CuII-exchanged SSZ-13: atomistic insights from DFT calculations and in situ XAS experiments, B. Kerkeni, D. Berthout, D. Berthomieu, D. E. Doronkin,* M. Casapu, J.-D. Grunwaldt, C. Chizallet*, J. Phys. Chem. C, 122, 16741-16755, 2018. http://dx.doi.org/10.1021/acs.jpcc.8b03572

63. Metal/acid bifunctional catalysis and intimacy criterion for ethylcyclohexane hydroconversion: when proximity does not matter, E. G. Acebo, C. Leroux, C. Chizallet, Y. Schuurman, C. Bouchy*, ACS Catalysis, 8, 6035-6046, 2018. http://dx.doi.org/10.1021/acscatal.8b00633  


62. Thermodynamic characterization of the hydroxyls group on the γ-alumina surface by the Energy Distribution Function, M. Lagauche, K. Larmier, E. Jolimaitre,* K. Barthelet, C. Chizallet, L. Favergeon, M. Pijolat, J. Phys. Chem. C, 121, 16770-16782, 2017. http://dx.doi.org/10.1021/acs.jpcc.7b02498  

61. Ab initio simulation of the acid sites at the external surface of zeolite Beta, J. Rey, P. Raybaud, C. Chizallet*, ChemCatChem, 9, 2176-2185, 2017. http://dx.doi.org/10.1002/cctc.201700080  

60. The pivotal role of catalysis in France: selective examples of recent advances and future prospects, H. Olivier-Bourbigou, C. Chizallet, F. Dumeignil, P. Fongarland, C. Geantet, P. Granger, F. Launay, A. Löfberg, P. Massiani, F. Maugé, A. Ouali, A.C. Roger, Y. Schuurman, N. Tanchoux, D. Uzio, F. Jérôme,* D. Duprez, C. Pinel*, ChemCatChem, 9, 2029-2064, 2017. http://dx.doi.org/10.1002/cctc.201700426   

59. [Editorial] The French Conference on Catalysis—FCCat 1, H. Petitjean, H. Olivier-Bourbigou, A.C. Roger, C. Chizallet, ChemCatChem, 9, 2024-2026, 2017. http://dx.doi.org/10.1002/cctc.201700830

58. Insight from ab initio calculations for the physical-chemistry of complex catalytic surfaces : the case of platinum-based catalysts ultra-dispersed on alumina, C. Chizallet, L’Actualité Chimique, 417, 34-39, 2017.

57. [Editorial] GECat 2015, B. Louis, P. Fongarland, O. Marie, H. Petitjean, C. Chizallet, D. Borremans, R. Marques, C. Fontaine, T. Onfroy, J.S. Girardon, C. R. Chimie, 20, 5-6, 2017. http://dx.doi.org/10.1016/j.crci.2016.09.008  

56. The Two Faces of Pseudo-Bridging Silanols: Isopropanol Catalytic Dehydration on Amorphous Silica-Alumina Relies on a Synergy between Brønsted and Lewis Acidic Functions, K. Larmier, C. Chizallet, S. Maury, N. Cadran, J. Abboud, A-F. Lamic-Humblot, E. Marceau, H. Lauron-Pernot, Angew. Chem., Int. Ed., 56, 230-234, 2017http://dx.doi.org/10.1002/anie.201609494  


55. French Catalysis and Much More at FCCat 1, H. Petitjean, H. Olivier-Bourbigou, J. Kervennal, A.C. Roger, C. Chizallet, ChemCatChem, 8, 3170 – 3174, 2016. http://dx.doi.org/10.1002/cctc.201601049  

54. Mixed experience/multi-scale modeling approach for the determination of reaction mechanisms: the case study of isopropanol dehydration on γ-alumina, K. Larmier, C. Chizallet, E. Marceau, H. Lauron-Pernot, L’Actualité Chimique, 408-409, 130-133, 2016.

53. Catalytic reforming : methodology and process development for a constant optimization and performance increase, P. Avenier, D. Bazer-Bachi, F. Bazer-Bachi, C. Chizallet, F. Deleau, F. Diehl, J. Gornay, E. Lemaire, V. Moizan-Basle, C. Plais, P. Raybaud, F. Richard, Oil Gas Sci. Technol., 71, 41, 2016. http://dx.doi.org/10.2516/ogst/2015040  

52. Dealumination mechanisms of zeolites and extra-framework aluminum confinement, M-C. Silaghi, C. Chizallet, J. Sauer, P. Raybaud, J. Catal., 339, 242-255, 2016. http://dx.doi.org/10.1016/j.jcat.2016.04.021  

51. Influence of co-adsorbed water and alcohol molecules on isopropanol dehydration on γ-alumina: Multi-scale modeling of experimental kinetic profiles, K. Larmier, A. Nicolle, C. Chizallet, N. Cadran, S. Maury, A-F. Lamic-Humblot, E. Marceau, H. Lauron-Pernot, ACS Catalysis, 6, 1905−1920, 2016. http://dx.doi.org/10.1021/acscatal.6b00080  

50. Density functional theory simulations of heterogeneous catalysts based on amorphous silica-alumina, C. Chizallet, K. Larmier, F. Leydier, P. Raybaud, L’Actualité Chimique, 403, 30-38, 2016.


49. Atomic Description of the Interface between Silica and Alumina in Aluminosilicates materials through Dynamic Nuclear Polarization Surface-Enhanced NMR Spectroscopy and DFT calculations, M. Valla, A. J. Rossini, M. Caillot, C. Chizallet, P. Raybaud, A. Chaumonnot, M. Digne, A. Lesage, L. Emsley, J. A. van Bokhoven, C. Copéret, J. Am. Chem. Soc., 137, 10710–10719, 2015. http://dx.doi.org/10.1021/jacs.5b06134  

48. Mechanistic investigation of isopropanol conversion on alumina catalysts: location of active sites for alkene / ether production, K. Larmier, C. Chizallet, N. Cadran, S. Maury,  J. Abboud, A-F. Lamic-Humblot, E. Marceau, H. Lauron-Pernot, ACS Catalysis, 5, 4423−4437, 2015. http://dx.doi.org/10.1021/acscatal.5b00723

47. Tuning the Metal-Support Interaction by Structural Recognition of Cobalt-Based Catalysts Precursors, K. Larmier, C. Chizallet, P. Raybaud, Angew. Chem., Int. Ed., 54, 6824–6827, 2015. http://dx.doi.org/10.1002/anie.201502069

46. Revisiting carbenium chemistry on Amorphous Silica Alumina: unraveling their milder acidity as compared to zeolites, F. Leydier, C. Chizallet, D. Costa, P. Raybaud, J. Catal., 325, 35-47, 2015. http://dx.doi.org/10.1016/j.jcat.2015.02.012  

45. Regioselectivity of Al-O bond hydrolysis during zeolites dealumination unified by Brønsted-Evans-Polanyi relationship, M-C. Silaghi, C. Chizallet, E. Petracovschi, T. Kerber, J. Sauer, P. Raybaud, ACS Catalysis, 5, 11-15, 2015. http://dx.doi.org/10.1021/cs501474u  


44. Monitoring morphology and hydrogen coverage of subnanometric Pt/γ-Al2O3 particles by in situ HERFD-XANES and quantum simulations, A. Gorczyca, V. Moizan, C. Chizallet, O. Proux, W. Delnet, E. Lahera, J.-L. Hazemann, P. Raybaud, Y. Joly, Angew. Chem. Int. Ed., 53, 12426-12429, 2014. http://dx.doi.org/10.1002/anie.201403585  

43. Density Functional Theory simulations of complex catalytic materials in reactive environment: beyond the ideal surface at low coverage, C. Chizallet, P. Raybaud*, Catal. Sci. Technol., 4, 2797-2813, 2014. http://dx.doi.org/10.1039/C3CY00965C  

42. Challenges on molecular aspects of dealumination and desilication of zeolites, M.C. Silaghi, C. Chizallet, P. Raybaud, Microporous Mesoporous Mater., 191, 82, 2014. http://dx.doi.org/10.1016/j.micromeso.2014.02.040  


41. Sulfur deactivation of NOx storage catalysts: a multiscale modeling approach, N. Rankovic, C. Chizallet, A. Nicolle, D. Berthout, P. Da Costa, Oil Gas Sci. Technol., 68, 995-1005, 2013. http://dx.doi.org/10.2516/ogst/2013123  

40. From gamma-alumina to supported platinum nanoclusters in reforming conditions: 10 years of DFT modeling and beyond, P. Raybaud, C. Chizallet, C. Mager-Maury, M. Digne, H. Toulhoat, P. Sautet, J. Catal., 308, 328-340, 2013. http://dx.doi.org/10.1016/j.jcat.2013.08.015  

39. Multiscale modeling of barium sulfate formation from BaO, N. Rankovic, C. Chizallet, A. Nicolle, P. Da Costa, Ind. Eng. Chem. Res., 52, 9086-9098, 2013. http://dx.doi.org/10.1021/ie401687d  

38. Origins of the deactivation process in the conversion of methylbutynol on Zinc oxide monitored by operando DRIFTS, C. Drouilly, J.-M. Krafft, F. Averseng, H. Lauron-Pernot, D. Bazer-Bachi, C. Chizallet, V. Lecocq, G. Costentin, Catal. Today, 205, 67-75, 2013. http://dx.doi.org/10.1016/j.cattod.2012.08.011  

37. Role of oxygen vacancies in the basicity of ZnO: from the model methylbutynol conversion to the ethanol transformation application, C. Drouilly, J.-M. Krafft, F. Averseng, H. Lauron-Pernot, D. Bazer-Bachi, C. Chizallet, V. Lecocq, G. Costentin, Appl. Catal. A., 453, 121-129, 2013. http://dx.doi.org/10.1016/j.apcata.2012.11.045  


36. Comment on "Electronic properties and charge transfer phenomena in Pt nanoparticles on γ-Al2O3: size, shape, support, and adsorbate effects" by F. Behafarid et al. , Phys.Chem. Chem. Phys., 2012, 14, 11766-11779, Raybaud P, Chizallet C., Toulhoat H., Sautet P., Phys. Chem. Chem. Phys., 14, 16773-16774, 2012. http://dx.doi.org/10.1039/C2CP43050A  

35. Catalytic synthesis of cyclic carbonates from epoxide and CO2 using  amine functionalised Metal-Organic Frameworks: electronic effects or frustrated acid-base pair ?, Lescouet T., Chizallet C., Farrusseng D., ChemCatChem, 4, 1725-1728, 2012. http://dx.doi.org/10.1002/cctc.201200288  

34. Adsorption and separation of xylene isomers : CPO-27 vs. HKUST-1 vs. NaY, D. Peralta, K. Barthelet,  J. Perez-Pellitero,  C. Chizallet, G. Chaplais, A. Simon-Masseron, G.D. Pirngruber, J. Phys. Chem. C, 116, 21844−21855, 2012. http://dx.doi.org/10.1021/jp306828x  

33. Conditions of formation and filling of oxygen vacancies in zinc oxide followed by in situ photoluminescence and in situ and operando EPR, C. Drouilly, J.M. Krafft, F. Averseng, S. Casale, D. Bazer-Bachi, C. Chizallet, V. Lecocq, H. Vezin, H. Lauron-Pernot, G. Costentin, J. Phys. Chem. C, 116, 21297–21307, 2012. http://dx.doi.org/10.1021/jp307693y  

32. A molecular approach for unraveling surface phase transition: sulfation of BaO as a model NOx trap, N. Rankovic, C. Chizallet, A. Nicolle, P. Da Costa, Chem. Eur. J., 18, 10511–10514, 2012. http://dx.doi.org/10.1002/chem.201103950  

31. Platinum nano-clusters stabilized on γ-alumina by chlorine used as a capping surface ligand: a DFT study, C. Mager-Maury, C. Chizallet, P. Sautet, P. Raybaud, ACS Catalysis, 2, 1346−1357, 2012. http://dx.doi.org/10.1021/cs300178y  

30. Effect of indium−doping of γ−alumina on the stabilization of PtSn alloy clusters prepared by surface organostannic chemistry, A.N. Jahel, V. Moizan-Baslé, C. Chizallet, P. Raybaud, J. Olivier-Fourcade, J.-C. Jumas, P. Avenier, S. Lacombe, J. Phys. Chem. C, 116, 10073-10083, 2012. http://dx.doi.org/10.1021/jp301282r  

29. Comparison of the behavior Metal-Organic Frameworks and zeolites for hydrocarbon separations, D. Peralta, G. Chaplais, A. Simon-Masseron, K. Barthelet, C. Chizallet, A.A. Quoineaud, G. Pirngruber, J. Am. Chem. Soc., 134, 8115-8126, 2012. http://dx.doi.org/10.1021/ja211864w  

28. CO adsorption on amorphous silica-alumina: electrostatic or acidity probe ?, F. Leydier, C. Chizallet, D. Costa, P. Raybaud, Chem. Commun., 48, 4076-4078, 2012. http://dx.doi.org/10.1039/C2CC30655G  


27. Brønsted acidity of amorphous silica-alumina:  the molecular rules of proton transfer, Leydier F., Chizallet C., Chaumonnot A., Digne M., Soyer E., Quoineaud A.A., Costa D., Raybaud P., J. Catal., 284, 215-229, 2011. http://dx.doi.org/10.1016/j.jcat.2011.08.015  

26. Experimental and computational study of functionality impact on SOD-Zeolitic Imidazolate Frameworks for CO2 separation, H. Amrouche, S. Aguado, J. Perez-Pellitero, C. Chizallet, F. Siperstein, D. Farrusseng, C. Nieto-Draghi, N. Bats, J. Phys. Chem. C., 115, 16425-16432, 2011. http://dx.doi.org/10.1021/jp202804g  

25.  Molecular modeling finds its place in the industry: examples of research aiming at the development of new materials, processes and chemical products in the field of energy and environment, Biscay F., Fecant A., Chizallet  C., Creton B., Ferrando N., Malfreyt P., Nieto-Draghi C., Raybaud P., Rousseau B., Ungerer P., L'Actualité Chimique, 353-354, 66-73, 2011.

24. Thermodynamic stability of buta-1,3-diene and but-1-ene on Pd(111) and (100) surfaces under H2 pressure : a DFT study, Chizallet C., Bonnard G., Krebs E., Bisson L., Thomazeau C., Raybaud P., J. Phys. Chem. C., 115, 12135-12149, 2011. http://dx.doi.org/10.1021/jp202811t  

23. Hydrogen induced reconstruction of small supported Pt particles: metal-support interaction versus surface hydride, Mager-Maury C., Bonnard G., Chizallet C., Sautet P., Raybaud P., ChemCatChem, 3, 200-207, 2011. http://dx.doi.org/10.1002/cctc.201000324  


22. Basic reactivity of CaO: investigating active sites under operating conditions, Petitjean H., Chizallet C., Krafft J.M., Che M., Lauron-Pernot H., Costentin G., Phys. Chem. Chem. Phys., 12, 14740-14748, 2010. http://dx.doi.org/10.1039/C0CP00855A  

21. Investigation of Acid Centers in MIL-53(Al, Ga) for Brønsted-Type Catalysis: In Situ FTIR and Ab Initio Molecular Modeling, Ravon U., Chaplais G., Chizallet C., Seyeedi B., Bonino F., Bordiga S., Bats N., Farrusseng D., ChemCatChem, 2, 1235-1238, 2010. http://dx.doi.org/10.1002/cctc.201000055  

20. Catalysis by a non-functionalized MOF in transesterification: acido-basicity at the external surface of ZIF-8 probed by FTIR and ab initio calculations, Chizallet C., Lazare S., Bazer-Bachi D., Bonnier F., Lecocq V., Soyer E., Quoineaud A.A, Bats N., J. Am. Chem. Soc., 132, 12365–12377, 2010. http://dx.doi.org/10.1021/ja103365s

19. Modulation of Catalyst Particle Structure upon Support Hydroxylation: Ab initio insights into Pd13 and Pt13 / γ-Al2O3 model catalysts, Hu C., Chizallet C., Mager-Maury C., Corral-Valero M., Sautet P., Toulhoat H., Raybaud P., J. Catal., 274, 99-110, 2010. http://dx.doi.org/10.1016/j.jcat.2010.06.009  

18. Acidity of amorphous silica-alumina: from coordination promotion of Lewis sites to proton transfer, Chizallet C., Raybaud P., ChemPhysChem, 11, 105-108, 2010. http://dx.doi.org/10.1002/cphc.200900797

17. External surface of ZIFs viewed ab initio: multifunctionality at the organic – inorganic interface, Chizallet C., Bats N., J. Phys. Chem. Lett., 1, 349-353, 2010. http://dx.doi.org/10.1021/jz900192x


16. Growth of boehmite particles in presence of xylitol: morphology oriented by the nest effect of hydrogen bonding, Chiche D., Chizallet C., Durupthy O., Revel R., Raybaud P., Chanéac C., Jolivet J.P., Phys. Chem. Chem. Phys., 11, 11310-11323, 2009. http://dx.doi.org/10.1039/b914062j

15. Identification by 1H MAS NMR of the OH groups responsible for kinetic basicity on MgO surfaces, Chizallet C., Petitjean H., Costentin G., Lauron-Pernot H., Maquet J., Bonhomme C., Che M., J. Catal., 268, 175-179, 2009. http://dx.doi.org/10.1016/j.jcat.2009.09.003

14. Insights into the geometry, stability and vibrational properties of OH groups on γ-Al2O3, TiO2-anatase and MgO from DFT calculations, Chizallet C., Digne M., Arrouvel C., Raybaud P., Delbecq F., Costentin G., Che M., Sautet P., Toulhoat H., Top. Catal., 52, 1005-1016, 2009. http://dx.doi.org/10.1007/s11244-009-9262-9  

13.  Structural, energetic, and electronic trends in low-dimensional late-transition-metal systems, Hu C., Chizallet C., Toulhoat H., Raybaud P., Phys. Rev. B, 79, 195416:1-11, 2009. http://dx.doi.org/10.1103/PhysRevB.79.195416  

12. Pseudo-bridging Silanols as versatile Brønsted Acid Sites of Amorphous Aluminosilicates Surfaces, Chizallet C., Raybaud P., Angew. Chem. Int. Ed., 48, 2891–2893, 2009. http://dx.doi.org/10.1002/anie.200804580  


11. Assignment of photoluminescence spectra of MgO powders: TD-DFT cluster calculations combined to experiments. Part II: hydroxylation effects, Chizallet C., Costentin G., Lauron-Pernot H., Krafft J.M., Che M., Delbecq F., Sautet P., J. Phys. Chem. C, 112, 19710-19717, 2008. http://dx.doi.org/10.1021/jp8067602  

10. Assignment of photoluminescence spectra of MgO powders: TD-DFT cluster calculations combined to experiments. Part I: structure effects on dehydroxylated surfaces, Chizallet C., Costentin G., Lauron-Pernot H., Krafft J.M., Che M., Delbecq F., Sautet P., J. Phys. Chem. C, 112, 16629-16637, 2008. http://dx.doi.org/10.1021/jp8045017  


9.   Study of the structure of OH groups on MgO by 1D and 2D 1H MAS NMR combined with DFT cluster calculations, Chizallet C., Costentin G., Lauron-Pernot H., Che M., Bonhomme C., Maquet J., Delbecq F., Sautet P., J. Phys. Chem. C, 111, 18279-18287, 2007. http://dx.doi.org/10.1021/jp077089g  

8.   Infra-red characterization of hydroxyl groups on MgO: a periodic and cluster DFT study, Chizallet C., Costentin G., Che M., Delbecq F., Sautet P., J. Am. Chem. Soc., 129, 6442-6452, 2007. http://dx.doi.org/10.1021/ja068720e  


7.   Role of hydroxyl groups on the basic reactivity of MgO surfaces: a combined theoretical and experimental approach, Chizallet C., Costentin G., Lauron-Pernot H., Krafft J.M., Che M., Bazin P., Saussey J., Delbecq F., Sautet P., Oil Gas Sci. Technol., 61, 479-488, 2006http://dx.doi.org/10.2516/ogst:2006023a  

6.   Revisiting acido-basicity of the MgO surface by periodic density functional theory calculations: role of surface topology and ion coordination on water dissociation, Chizallet C., Costentin G., Che M., Delbecq F., Sautet P., J. Phys. Chem. B, 110, 15878-15886, 2006. http://dx.doi.org/10.1021/jp060840l  

5.   Water on extended and point defects at MgO surfaces, Costa D., Chizallet C., Ealet B., Goniakowski J., Finocchi F., J. Chem. Phys., 125, 054702 : 1-10, 2006. http://link.aip.org/link/doi/10.1063/1.2212407  

4.   Thermodynamic Brønsted basicity of clean MgO surfaces determined by their deprotonation ability: role of Mg2+-O2- pairs, Chizallet C., Bailly M.L., Costentin G., Krafft J.M., Lauron-Pernot H., Bazin P., Saussey J., Che M., Catal. Today, 116, 196-205, 2006. http://dx.doi.org/10.1016/j.cattod.2006.01.030  

3. 1H MAS NMR study of the coordination of hydroxyl groups generated upon adsorption of H2O or CD3OH on clean MgO surfaces, Chizallet C., Costentin G., Maquet J., Lauron-Pernot H., Che M., Appl. Catal. A., 307, 239-244, 2006. http://dx.doi.org/10.1016/j.apcata.2006.03.056

2.   Kinetic model of energy transfer processes between low coordinated ions on MgO by photoluminescence decay measurements, Chizallet C., Costentin G., Krafft J.M., Lauron-Pernot H., Che M., ChemPhysChem, 7, 904-911, 2006. http://dx.doi.org/10.1002/cphc.200500580  

1.   A spectroscopy and catalysis study of the nature of active sites of MgO catalysts : Thermodynamic Brønsted basicity versus reactivity of basic sites, Bailly M.L., Chizallet C., Costentin G., Krafft J.M., Lauron-Pernot H., Che M., J. Catal., 235, 413-422, 2005. http://dx.doi.org/10.1016/j.jcat.2005.09.004