Zoom sur...

Recherche fondamentale
Actualités 31 octobre 2023

La thermodynamique des électrolytes bénéficie de la dynamique de recherche européenne

Les électrolytes interviennent dans de nombreux processus industriels. Leurs propriétés thermodynamiques sont étudiées par les experts d’IFPEN dans le cadre de projets collaboratifs et d’une chaire dédiée à IFP-School. Pour intensifier les échanges scientifiques, Fufang Yang, jeune chercheur au DTU, est venu compléter les équipes d’IFPEN pour approfondir plusieurs questions fondamentales concernant la thermodynamique des électrolytes.

Innovation et industrie
Actualités 19 octobre 2022

La thermodynamique appliquée face aux défis de la transition écologique

Pour embrasser d’un seul regard l’ensemble des défis que va devoir affronter la thermodynamique appliquée dans les prochaines années, un groupe d’experts de l'EFCE a publié un document de synthèse « A View on the Future of Applied Thermodynamics ».

Science@ifpen n°56
Brèves

Modélisation moléculaire de l'interphase électrolyte solide dans les batteries au lithium

La perte progressive d’autonomie des batteries lithium-ion, utilisées dans nos téléphones portables et dans les véhicules électriques, est notamment liée à la formation d’une couche dite « Solid Electrolyte Interphase » (SEI) qui s’installe entre une des électrodes et l’électrolyte de la batterie. La formation de cette couche SEI (Figure 1) a été étudiée théoriquement dans le cadre de cette thèse, via la modélisation moléculaire, afin de comprendre ses aspects thermodynamiques et cinétiques. Le travail a d’abord consisté à établir une base de données des réactions chimiques impliquées en utilisant la DFT1 pour calculer les énergies de réaction et d’activation. Les simulations kMC2 ont ensuite révélé que des sels comme Li2CO3 et Li2O, issus de la dégradation de l'électrolyte, jouent un rôle crucial. Les simulations permettent également de prédire la perte de capacité de la batterie selon la composition initiale de la couche SEI (Figure 2) et suggèrent de considérer d'autres sels comme LiF issus de la dégradation [1]...
Science@ifpen n°56
Brèves

Méthodologies avancées de calcul de constantes de vitesse de réactions pour des modèles innovants de catalyseurs

La compréhension des propriétés chimiques des supports (alumine-gamma notamment) et phases actives des catalyseurs hétérogènes représente un défi nécessitant la description fine de systèmes à l’échelle atomique et la quantification d’événements rares à cette échelle : les réactions chimiques. Le calcul quantique apparaît alors comme un outil pertinent pour tenter de relever ce défi. Toutefois, une amélioration continue des méthodologies numériques et des modèles atomistiques est nécessaire pour déterminer la structure complexe des sites actifs, d’une part, et leur réactivité (constante de vitesse), d’autre part. En couvrant tous ces aspects, ce travail de thèse a apporté des réponses à ce double enjeu, tout en explorant les apports d’algorithmes d’apprentissage machine (ML1)...
Science@ifpen n° 53
Brèves

La thermodynamique fait son apprentissage… profond

La simulation du transport réactif de fluides a de multiples applications - écoulements en milieu poreux, combustion, génie des procédés - et requiert des calculs d’équilibre thermodynamique (aussi appelés calculs « flash »). Cependant, ces calculs peuvent avoir des durées importantes et, comme ils interviennent en grand nombre dans les simulations réalisées, ils limitent en pratique ces dernières à des systèmes contenant peu d’espèces chimiques ou à des échelles de temps et d’espace restreintes...
Science@ifpen n° 51
Brèves

VS6 - Comment mieux maîtriser la Perte de Capacité des Batteries au Lithium

Tout le monde a remarqué que les batteries à base d’ions lithium, utilisées dans nos téléphones portables, ordinateurs, etc., perdent progressivement de l’autonomie au point de devenir inutilisables. Cette perte d’autonomie résulte notamment d’une couche, dite SEI, qui s’installe entre une des électrodes et l’électrolyte de la batterie. Cette couche apparaît dès le premier cycle de charge/décharge de la batterie, et croît progressivement en consommant des ions de lithium, de manière irréversible et donc au détriment de la capacité de la batterie...
A la recherche d’un nouveau chemin réactionnel pour l’oligomérisation de l’éthylène par le nickel
Brèves

A la recherche d’un nouveau chemin réactionnel pour l’oligomérisation de l’éthylène par le nickel

La réaction d’oligomérisation des oléfines permet d’accéder à une large gamme de composés clés dans le domaine des carburants, de la pétrochimie ou encore de la chimie fine...
Science@ifpen n° 50
Brèves

La création in silico de structures moléculaires

Quel ingénieur chimiste n’a jamais rêvé d’un outil lui permettant d’identifier directement un fluide (corps pur ou mélange) sur la base de caractéristiques nécessaires à un contexte applicatif donné ? Un tel Graal pourrait devenir réalité grâce à la Chémoinformatique et ses méthodes...
Science@ifpen n° 50
Brèves

A la recherche d’un nouveau chemin réactionnel pour l’oligomérisation de l’éthylène par le nickel

La réaction d’oligomérisation des oléfines permet d’accéder à une large gamme de composés clés dans le domaine des carburants, de la pétrochimie ou encore de la chimie fine...
Science@ifpen n° 49
Brèves

La thermodynamique des électrolytes à IFPEN

La thermodynamique des électrolytes est un domaine stratégique pour IFPEN car elle intervient dans nombre de ses innovations technologiques, existantes ou en développement...
Science@ifpen n° 49
Brèves

Les matériaux pour l’énergie, une transition d’échelles pour une transition énergétique

De son expérience reconnue dans le développement de solutions pour la production énergétique, IFPEN a hérité une expertise approfondie des matériaux à usage fonctionnel. Cette compétence est aujourd’hui mise au service des nouveaux défis de la transition énergétique...
La chémoinformatique et ses descripteurs : application à la compatibilité polymères/fluides
Brèves

La chémoinformatique et ses descripteurs : application à la compatibilité polymères/fluides

Maîtriser la compatibilité entre polymères et fluides est essentiel dans de nombreux secteurs de l’industrie, comme par exemple dans l’automobile avec la question de la tenue des matériaux du système d’alimentation en carburant.