Zoom sur...

Science@ifpen n° 55 - Conception Modélisation Procédés
Brèves

Conception de procédé et Démonstration industrielle, les 2 faces d’une même pièce

D’après le scénario NZE (Net Zero Emission) de l’IEA, le déploiement du CCUS (Carbon Capture Utilisation and Storage) doit s’accélérer pour passer d’environ 40 Mt de CO2 captées au niveau mondial en 2022 à 1 Gt en 2030. Parmi les solutions développées, le captage en postcombustion au moyen de solvants est, à ce jour, considéré comme l’une des plus robustes, efficaces et pertinentes. C’est ainsi qu’est née la solution DMX(TM), qui répond au besoin de disposer de technologies efficaces et économiques. Fruit de plus de 10 ans de recherche à IFPEN, cette technologie arrivant en phase finale de développement, avait besoin d’être démontrée dans un cadre industriel réel...
Science@ifpen n° 55 - Conception Modélisation Procédés
Brèves

Valoriser les enseignements du «monde fossile» au bénéfice des procédés plus verts

IFPEN est un leader mondial dans le développement de l’hydrotraitement de charges fossiles pour la production de carburants propres. Des procédés de la même famille s’appliquent désormais à une plus grande diversité charges : pyrolysats de plastique ou de pneus, dans le contexte du recyclage chimique, huiles végétales pour produire des biocarburants, etc. Pour que ces procédés soient eux-mêmes éco-efficients, au-delà du bénéfice environnemental recherché, leurs conditions opératoires doivent être optimisées par l’utilisation de modèles cinétiques ou hybrides, en fonction des charges utilisées et des spécifications recherchées pour les produits visés...
Science@ifpen n° 55 - Conception Modélisation Procédés
Brèves

Mieux comprendre la désactivation enzymatique durant l’hydrolyse de la biomasse lignocellulosique

Motivé par la recherche de technologies innovantes dans le domaine du transport, IFPEN développe, depuis de nombreuses années, de nouveaux procédés de production de biocarburants (Vegan®, Futurol®, BioTfueL®) et participe à leur commercialisation. Parmi les différentes voies étudiées, la filière de production de bioéthanol à partir de ressources lignocellulosiques a de nombreux atouts à faire valoir...
Science@ifpen n° 55 - Conception Modélisation Procédés
Brèves

Fox-Prod : bien combiner les unités pour des procédés optimisés

Dans le secteur de l’énergie et de la chimie, la conversion des matières premières en produits finis ou semi finis se fait par l’enchaînement de procédés qui, au travers d’unités dédiées, comprennent chacun des étapes de conversion des flux entrants et de séparation des produits de sortie. Dans un contexte industriel où la priorité est mise sur l’optimisation de l’utilisation des ressources et sur la réduction de l’empreinte environnementale, la capacité à redéfinir et à optimiser l’agencement des unités est apparue essentiel à IFPEN qui a développé un outil pour cela...
Science@ifpen n° 55 - Conception Modélisation Procédés
Brèves

Les procédés se font mousser

Les mousses solides, à base de métaux ou de céramiques, sont des structures poreuses dont l’usage est relativement nouveau dans le domaine des procédés chimiques, et qui sont étudiées à IFPEN depuis quelques années déjà. De par leur texture 3D, constituée d’une multitude de cavités sphériques juxtaposées (familière dans le domaine de la catalyse hétérogène), ces structures présentent un fort taux de porosité (environ 70-80 %) et une grande surface spécifique. Ceci leur confère a priori de très bonnes performances de transfert externe...
Science@ifpen n° 55 - Conception Modélisation Procédés
Brèves

Modélisation de la fabrication par précipitation - Une compétence pour la production de matériaux pour les cathodes de batteries

Fortes des connaissances acquises sur la synthèse par précipitation de l’alumine pour les catalyseurs hétérogènes, les équipes d’IFPEN se sont lancées sur la synthèse des précurseurs de matériaux actifs pour les cathodes (pCAM) de batteries Li-ion. En effet, ces matériaux aussi sont obtenus par précipitation dans des cuves agitées, ce qui présente certaines similitudes avec la synthèse de l’alumine (phénomènes de nucléation, croissance et agglomération). Ils offrent néanmoins leur lot de défis qui ouvrent autant de nouvelles voies de recherche...
Science@ifpen n° 55 - Conception Modélisation Procédés
Brèves

Modélisation de la fabrication par précipitation - Un besoin pour les supports de catalyseur

Dans les procédés de transformation chimique mettant en œuvre une catalyse hétérogène, la phase active, qui accélère les transformations des molécules, est souvent déposée sur un support poreux. Celui-ci est doté d’une surface interne importante, permettant ainsi d’accueillir un grand nombre de sites actifs dans un faible volume. Ce support poreux est très souvent de l’alumine et doit à la fois avoir une tenue mécanique et une résistance thermique adéquates, et favoriser un transfert approprié de masse et de chaleur. Ces propriétés dépendent fortement de la texture du support, laquelle résulte du procédé de fabrication...
Science@ifpen n° 54
Brèves

VS5 - Fabrication des supports catalytiques : un nouveau paramètre pour contrôler le malaxage des pâtes de boehmite

Les procédés utilisant la catalyse hétérogène1 nécessitent la conception et le développement de matériaux innovants, aux propriétés mécaniques et texturales contrôlées, pour réaliser des supports de catalyseurs efficaces. En effet, la microstructure poreuse de ces supports est déterminante dans la performance du catalyseur supporté, puisqu’elle affecte fortement la résistance mécanique du support et les phénomènes de transferts impliqués...
Page individuelle

Minh Tuan NGUYEN

Dr. Ingénieur de recherche
Minh Tuan Nguyen a obtenu son diplôme d'ingénieur à l’Ecole polytechnique de Danang (Vietnam) en 2012, et son Master à l'Ecole Nationale Supérieure de Chimie de Lille (ENSCL) et à IFP School en 2013
Science@ifpen n° 53
Brèves

L’apprentissage par transfert de connaissance pour l’optimisation des procédés

IFPEN est un leader mondial dans le développement de catalyseurs et de procédés pour la production de carburants propres. Pour que ces procédés soient eux-mêmes éco-efficients, il est nécessaire d’optimiser le couplage des catalyseurs avec les conditions opératoires, en fonction des charges utilisées et des spécifications recherchées pour les produits raffinés. Il est dès lors utile de pouvoir s’appuyer sur des modèles prédictifs quant aux performances atteintes et le recours à l’apprentissage (Machine learning) est une option intéressante dans ce cas...